Skip to main content
Library homepage
 
Biology LibreTexts

3: The Cell

  • Page ID
    5282
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Life takes many forms, from giant redwood trees towering hundreds of feet in the air to the tiniest known microbes, which measure only a few billionths of a meter. Humans have long pondered life’s origins and debated the defining characteristics of life, but our understanding of these concepts has changed radically since the invention of the microscope. In the 17th century, observations of microscopic life led to the development of the cell theory: the idea that the fundamental unit of life is the cell, that all organisms contain at least one cell, and that cells only come from other cells.

    Photos of various mirobes. A) a triangular cell approximately 10 µm long with long flagella. B) Many rod shaped cells approximately 10 µm long. C) Round cells approximately 85 µm in diameter. D) a portion of a large oval over 200 µm in length with smaller spherical structures inside. E) Long, ribbon shaped cells approximately 20 µm in length. F) Many long spiral cells.
    Figure \(\PageIndex{1}\): Microorganisms vary visually in their size and shape, as can be observed microscopically; but they also vary in invisible ways, such as in their metabolic capabilities. (credit a, e, f: modification of work by Centers for Disease Control and Prevention; credit b: modification of work by NIAID; credit c: modification of work by CSIRO; credit d: modification of work by “Microscopic World”/YouTube)

    Despite sharing certain characteristics, cells may vary significantly. The two main types of cells are prokaryotic cells (lacking a nucleus) and eukaryotic cells (containing a well-organized, membrane-bound nucleus). Each type of cell exhibits remarkable variety in structure, function, and metabolic activity. This chapter will focus on the historical discoveries that have shaped our current understanding of microbes, including their origins and their role in human disease. We will then explore the distinguishing structures found in prokaryotic and eukaryotic cells.

    • 3.1: Spontaneous Generation
      The theory of spontaneous generation states that life arose from nonliving matter. It was a long-held belief dating back to Aristotle and the ancient Greeks.  Experimentation by Francesco Redi in the 17th century presented the first significant evidence refuting spontaneous generation by showing that flies must have access to meat for maggots to develop on the meat. Louis Pasteur is credited with conclusively disproving the theory and proposed that “life only comes from life.”
    • 3.2: Foundations of Modern Cell Theory
      Although cells were first observed in the 1660s by Robert Hooke, cell theory was not well accepted for another 200 years. The work of scientists such as Schleiden, Schwann, Remak, and Virchow contributed to its acceptance. Endosymbiotic theory states that mitochondria and chloroplasts, organelles found in many types of organisms, have their origins in bacteria. Significant structural and genetic information support this theory. The miasma theory was widely accepted until the 19th century.
    • 3.3: Unique Characteristics of Prokaryotic Cells
      Prokaryotic cells differ from eukaryotic cells in that their genetic material is contained in a nucleoid rather than a membrane-bound nucleus. In addition, prokaryotic cells generally lack membrane-bound organelles. Prokaryotic cells of the same species typically share a similar cell morphology and cellular arrangement. Most prokaryotic cells have a cell wall that helps the organism maintain cellular morphology and protects it against changes in osmotic pressure.
    • 3.4: Unique Characteristics of Eukaryotic Cells
      Eukaryotic cells are defined by the presence of a nucleus containing the DNA genome and bound by a nuclear membrane (or nuclear envelope) composed of two lipid bilayers that regulate transport of materials into and out of the nucleus through nuclear pores. Eukaryotic cell morphologies vary greatly and may be maintained by various structures, including the cytoskeleton, the cell membrane, and/or the cell wall. The nucleolus in the nucleus of eukaryotic cells is the site of ribosomal synthesis.
    • 3.E: The Cell (Exercises)

    Thumbnail: A 3D rendering of an animal cell cut in half. (CC -BY-SA 4.0; Zaldua I., Equisoain J.J., Zabalza A., Gonzalez E.M., Marzo A., Public University of Navarre).


    This page titled 3: The Cell is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?