6.9: Bibliography
- Page ID
- 26791
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Albright, T.P., D. Mutiibwa, A.R. Gerson, et al. 2017. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences 114: 2283–88. https://doi.org/10.1073/pnas.1613625114
Allison, E.H., A.L. Perry, M.-C. Badjeck, et al. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10: 173–96. https://doi.org/10.1111/j.1467-2979.2008.00310.x
Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the Earth. Philosophical Magazine and Journal of Science 41: 237–76. https://doi.org/10.1080/14786449608620846
Barbet-Massin, M., B.A. Walther, W. Thuiller, et al. 2009. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters 5: 248–51. https://doi.org/10.1098/rsbl.2008.0715
Battarbee, R.W. 2014. The rediscovery of the Aldabra banded snail, Rhachistia aldabrae. Biology Letters 10: 20140771. https://doi.org/10.1098/rsbl.2014.0771
Bazelet, C., and P. Naskrecki. 2014. Pseudosaga maraisi. The IUCN Red List of Threatened Species 2014: e.T62452865A62452868. http://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T62 452865A62452868.en
Beale, C.M., N.E. Baker, M.J. Brewer, et al. 2013. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecology letters 16: 1061–68. https://doi.org/10.1111/ele.12139
BirdLife International. 2016. Alauda razae. The IUCN Red List of Threatened Species 2016: e.T22717428A94531580. http://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22717428A131103086.en
Boko, M., I. Niang, A. Nyong, et al. 2007. Africa. In: Climate Change 2007: Impacts, Adaptation and Vulnerability, ed. by S. Solomon et al. (Cambridge: Cambridge University Press). https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter9-1.pdf
Both, C., S. Bouwhuis, C.M. Lessells, et al. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441: 81–83. https://doi.org/10.1038/nature04539
Branch, T.A., B.M. DeJoseph, L.J. Ray, et al. 2013. Impacts of ocean acidification on marine seafood. Trends in Ecology and Evolution 28: 178–86. https://doi.org/10.1016/j.tree.2012.10.001
Burton, M.E.H., J.R. Poulsen, M.E. Lee, et al. 2017. Reducing carbon emissions from forest conversion for oil palm agriculture in Gabon. Conservation Letters 10: 297–307. https://doi.org/10.1111/conl.12265
Carolin, S.A., R.T. Walker, C.C. Day, et al. 2019. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proceedings of the National Academy of Sciences 116: 67–72. https://doi.org/10.1073/pnas.1808103115
Carrington, D. Why the Guardian is changing the language it uses about the environment. Guardian. https://gu.com/p/bfgxm
Carr, J.A., A.F. Hughes, and W.B. Foden. 2014. A climate change vulnerability assessment of West African species. Technical Report (Cambridge: UNEP-WCMC). http://parcc.protectedplanet.net/assets/IUCN_species_vulnerability-181b4593dd469dcba033b1f06aaa3cd7c7678424c3a2b056578c9582bd5bf7fb.pdf
Chauka, L.J. 2016. Tanzanian reef building corals may succumb to bleaching events: Evidences from coral-symbiodinium symbioses. In: Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean, ed. by S. Diop et al. (Cham: Springer). https://doi.org/10.1007/978-3-319-25370-1
Conradie, S.R., S.M. Woodbourne, S.J. Cunningham, et al. 2019. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st Century. Proceedings of the National Academy of Sciences 116: in press.
Craig, M.H., R.W. Snow, and D. le Sueur. 1999. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today 15: 105–11. https://doi.org/10.1016/S0169-4758(99)01396-4
Craparo, A.C.W., P.J.A. van Asten, P. Läderach, et al. 2015. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology 207: 1–10. https://doi.org/10.1016/j.agrformet.2015.03.005
Crump, M.L., F.R. Hensley, and K.L. Clark, 1992. Apparent decline of the golden toad: Underground or extinct? Copia 1992: 413–20.
Cunningham, S.J., R.O. Martin, C.L. Hojem, et al. 2013. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: A study of common fiscals. PLoS ONE 8: e74613. https://doi.org/10.1371/journal.pone.0074613
DeMenocal, P.B. 2001. Cultural responses to climate change during the late Holocene. Science 292: 667–73. https://doi.org/10.1126/science.1059287
Dietz, S., A. Bowen, C. Dixon, et al. 2016. ‘Climate value at risk’ of global financial assets. Nature Climate Change 6: 676–79. https://doi.org/10.1038/nclimate2972
Dimitrov, D., D. Nogués-Bravo, and N. Scharff. 2012. Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc Mountains and the drivers of Saintpaulia diversity. PloS ONE 7: e48908. https://doi.org/10.1371/journal.pone.0048908
du Plessis, K.L., R.O. Martin, P.A.R. Hockey, et al. 2012. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Global Change Biology 18: 2063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x
Engelbrecht, F.A., J.L. McGregor, and C.J. Engelbrecht. 2009. Dynamics of the Conformal‐Cubic Atmospheric Model projected climate‐change signal over southern Africa. International Journal of Climatology 29: 1013–33. https://doi.org/10.1002/joc.1742
Fagotto, M., and M. Gattoni. 2016. West Africa is being swallowed by the sea. Foreign Policy. http://atfp.co/2tUZCaM
Fitchett, J.M., and S.W. Grab. 2014. A 66‐year tropical cyclone record for south‐east Africa: Temporal trends in a global context. International Journal of Climatology 34: 3604–15. https://doi.org/10.1002/joc.3932
Flörke, M., C. Schneider, and R.I. McDonald. 2018. Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability 1: 51–58. https://doi.org/10.1038/s41893-017-0006-8
Foden, W., G.F. Midgley, G. Hughes, et al. 2007. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity and Distributions 13: 645–53. https://doi.org/10.1111/j.1472-4642.2007.00391.x
Fordham, D.A., C. Bertelsmeier, B.W. Brook, et al. 2018. How complex should models be? Comparing correlative and mechanistic range dynamics models. Global Change Biology 24: 1357–70. https://doi.org/10.1111/gcb.13935
Forster, P., V. Ramaswamy, P. Artaxo, et al. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis, ed. by S. Solomon et al. (Cambridge: Cambridge University Press). https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf
Garpe, K.C., S.A.S. Yahya, U. Lindahl, et al. 2006. Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Marine Ecology Progress Series 315: 237–47. https://doi.org/10.3354/meps315237
Gillis, J. 2017. Earth sets a temperature record for the third straight year. New York Times. https://nyti.ms/2jAdWlA
Gonedelé B.S., I. Koné, A.E., Bitty, et al. 2012. Distribution and conservation status of catarrhine primates in Côte d’Ivoire (West Africa). Folia Primatologica 83: 11–23. https://doi.org/10.1159/000338752
Grab, S., and A. Craparo. 2011. Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agricultural and Forest Meteorology 151: 406–13. http://doi.org/10.1016/j.agrformet.2010.11.001
Gynther, I., N. Waller, and L.K.-P. Leung. 2016. Confirmation of the extinction of the Bramble Cay melomys Melomys rubicola on Bramble Cay, Torres Strait (Brisbane: EHP). https://environment.des.qld.gov.au/wildlife/threatened-species/documents/bramble-cay-melomys-survey-report.pdf
Harris, N.L., S. Brown, S.C. Hagen, et al. 2012. Baseline map of carbon emissions from deforestation in tropical regions. Science 336: 1573–76. https://doi.org/10.1126/science.1217962
Hole, D.G., S.G. Willis, D.J. Pain, et al. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology Letters 12: 420–31. https://doi.org/10.1111/j.1461-0248.2009.01297.x
Houniet, D.T., W. Thuiller, and K.A. Tolley. 2009. Potential effects of predicted climate change on the endemic South African Dwarf Chameleons, Bradypodion. African Journal of Herpetology 58: 28–35. https://doi.org/10.1080/21564574.2009.9635577
Hsiang, S.M., and A.H. Sobel. 2016. Potentially extreme population displacement and concentration in the tropics under non-extreme warming. Scientific Reports 6: 25697. https://doi.org/10.1038/srep25697
Huntley, B., and P. Barnard. 2012. Potential impacts of climatic change on southern African birds of fynbos and grassland biodiversity hotspots. Diversity and Distributions 18: 1–13. https://doi.org/10.1111/j.1472-4642.2012.00890.x
IPCC. 2014: Climate Change 2014: Synthesis Report (Geneva: IPCC). https://www.ipcc.ch/report/ar5/syr
Ito, T., S. Minobe, M.C. Long, et al. 2017. Upper ocean O2 trends: 1958–2015. Geophysical Research Letters 44: 4214–23. https://doi.org/10.1002/2017GL073613
Jackson, R.B., C. Le Quéré, R.M. Andrew, et al. 2018. Global energy growth is outpacing decarbonization. Environmental Research Letters 13: 120401. https://doi.org/10.1088/1748-9326/aaf303
Jaramillo J., E. Muchugu, F.E. Vega, et al. 2011. Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6: e24528. https://doi.org/10.1371/journal.pone.0024528
Jezkova, T., and J.J. Wiens. 2016. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B 283: 20162104. https://doi.org/10.1098/rspb.2016.2104
Jolly, W.M., M.A. Cochrane, P.H. Freeborn, et al. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications 6: 8537. https://doi.org/10.1038/ncomms8537
Kaempffert, W. 1956. Warmer climate on the Earth may be due to more carbon dioxide in the air. New York Times. https://nyti.ms/2zYC2Ot
Kaniewski, D., E. van Campo, J. Guiot, et al. 2013. Environmental roots of the Late Bronze Age crisis. PLoS ONE 8: e71004. https://doi.org/10.1371/journal.pone.0071004
Khatiwala, S., F. Primeau, and T. Hall. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462: 346–49. https://doi.org/10.1038/nature08526
Knouft, J.H., and D.L. Ficklin. 2017. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annual Review of Ecology, Evolution, and Systematics 48: 111–33. https://doi.org/10.1146/annurev-ecolsys-110316-022803
Koh, L.P., R.R. Dunn, N.S. Sodhi, et al. 2004. Species coextinctions and the biodiversity crisis. Science 305: 1632–34. https://doi.org/10.1126/science.1101101
Kreyling, J., D. Wana, and C. Beierkuhnlein. 2010. Potential consequences of climate warming for tropical plant species in high mountains of southern Ethiopia. Diversity and Distributions 16: 593–605. https://doi.org/10.1111/j.1472-4642.2010.00675.x
La Sorte, F.A., S.H.M. Butchart, W. Jetz, et al. 2014. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: Implications under global climate change. PLoS ONE 9: e98361. https://doi.org/10.1371/journal.pone.0098361
Laloë, J.-O., J. Cozens, B. Renom, et al. 2014. Effects of rising temperature on the viability of an important sea turtle rookery. Nature Climate Change 4: 513–18. https://doi.org/10.1038/nclimate2236
Lam, V.W.Y., W.W.L. Cheung, W. Swartz, et al. 2012. Climate change impacts on fisheries in West Africa: Implications for economic, food and nutritional security. African Journal of Marine Science 34: 103–17. http://doi.org/10.2989/1814232X.2012.673294
Le Quéré, C.L., R.M. Andrew, P. Friedlingstein, et al. 2018. Global carbon budget 2018. Earth System Science Data 10: 2141–94. https://doi.org/10.5194/essd-10-2141-2018
Leduc, A.O.H.C., P.L. Munday, G.E. Brown, et al. 2013. Effects of acidification on olfactory-mediated behavior in freshwater and marine ecosystems: A synthesis. Philosophical Transactions of the Royal Society B 368: 20120447. http://doi.org/10.1098/rstb.2012.0447
Leslie, A.J., and J.R. Spotila. 2001. Alien plant threatens Nile crocodile (Crocodylus niloticus) breeding in Lake St. Lucia, South Africa. Biological Conservation 98: 347–55. https://doi.org/10.1016/S0006-3207(00)00177-4
Linder, J.M. 2013. African primate biodiversity threatened by “new wave” of industrial oil palm expansion. African Primates 8: 25–38.
Linder, J.M., and R.E. Palkovitz. 2016. The threat of industrial oil palm expansion to primates and their habitats. In: Ethnoprimatology, ed. by M. Waller (Cham: Springer). https://doi.org/10.1007/978-3-319-30469-4
Long, M.C., C. Deutsch, and T. Ito. 2016. Finding forced trends in oceanic oxygen. Global Biogeochemical Cycles 30: 381–97. https://doi.org/10.1002/2015GB005310
Maxwell, D., N. Majid, H. Stobaugh, et al. 2014. Lessons learned from the Somalia famine and the greater Horn of Africa crisis 2011–2012 (Medford: Feinstein International Center, Tufts University). http://fic.tufts.edu/publication-item/famine-somalia-crisis-2011-2012
McClanahan, T.R., M. Ateweberhan, C.A. Muhando, et al. 2007. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecological Monographs 77: 503–25. https://doi.org/10.1890/06-1182.1
McClean, C.J., N. Doswald, W. Küper, et al. 2006. Potential impacts of climate change on Sub-Saharan African plant priority area selection. Diversity and Distributions 12: 645–55. https://doi.org/10.1111/j.1472-4642.2006.00290.x
McKechnie, A.E., and B.O. Wolf. 2010. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biology Letters 6: 253–56. https://doi.org/10.1098/rsbl.2009.0702
Medek, D.E., J. Schwartz, and S.S. Myers. 2017. Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environmental Health Perspectives 125: 087002. https://doi.org/10.1289/EHP41
Mekasha, A., L. Nigatu, K. Tesfaye, et al. 2013. Modeling the response of tropical highland herbaceous grassland species to climate change: The case of the Arsi Mountains of Ethiopia. Biological Conservation 168: 169–75. https://doi.org/10.1016/j.biocon.2013.09.020
Merone, L, and P. Tait. 2018. ‘Climate refugees’: Is it time to legally acknowledge those displaced by climate disruption? Australian and New Zealand Journal of Public Health 6: 508–09. https://doi.org/10.1111/1753-6405.12849
Milne, R., S.J. Cunningham, A.T. Lee, et al. 2015. The role of thermal physiology in recent declines of birds in a biodiversity hotspot. Conservation Physiology 3: p.cov048. https://doi.org/10.1093/conphys/cov048
Mollica, N.R., W. Guo, A.L. Cohen, et al. 2018. Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National Academy of Sciences 115: 1754–59. https://doi.org/10.1073/pnas.1712806115
Myers, S.S., A. Zanobetti, I. Kloog, et al. 2014. Increasing CO2 threatens human nutrition. Nature 510: 139–42. https://doi.org/10.1038/nature13179
NASA. 2018. Forcings in GISS Climate Model: Historical Data. https://data.giss.nasa.gov/modelforce/ghgases
NOAA. 2016. Extended Reconstructed Sea Surface Temperature (ERSST), v. 4. http://doi.org/10.7289/V5KD1VVF
NOAA. 2018a. Climate at a Glance: Global Time Series, December 2018. https://www.ncdc.noaa.gov/cag
NOAA. 2018b. NOAA Earth System Research Laboratory: Global Monitoring Division, December 2018. https://www.esrl.noaa.gov/gmd/ccgg/trends
NOAA. 2018c. State of the Climate: Global Climate Report for April 2018. https://www.ncdc.noaa.gov/sotc/global/201804
O’Connor, T.G., and G.A. Kiker. 2004. Collapse of the Mapungubwe society: Vulnerability of pastoralism to increasing aridity. Climatic Change 66: 49–66. https://doi.org/10.1023/B:CLIM.0000043192.19088.9d
O’Reilly, C.M., S. Sharma, D.K. Gray, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–81. https://doi.org/10.1002/2015GL066235
O’Reilly, C.M., S.R. Alin, P.-D. Plisnier, et al. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–68. https://doi.org/10.1038/nature01833
Ordway, E.M., R.L. Naylor, R.N. Nkongho, et al. 2019. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nature Communications 10: 114. https://doi.org/10.1038/s41467-018-07915-2
Pinsky, M.L., A.M. Eikeset, D.J. McCauley, et al., 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569: 108–11. https://doi.org/10.1038/s41586-019-1132-4
Pollom, R. 2017. Hippocampus capensis. The IUCN Red List of Threatened Species 2017: e.T10056A54903534. http://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T10056A54903534.en
Ponce-Reyes, R., A.J. Plumptre, D. Segan, et al. 2017. Forecasting ecosystem responses to climate change across Africa’s Albertine Rift. Biological Conservation 209: 464–72. https://doi.org/10.1016/j.biocon.2017.03.015
Reizenberg, J.-L., L.E. Bloy, O.L.F. Weyl, et al. 2019. Variation in thermal tolerances of native freshwater fishes in South Africa’s Cape Fold Ecoregion: Examining the east-west gradient in species’ sensitivity to climate warming. Journal of Fish Biology 94: 103–12. https://doi.org/10.1111/jfb.13866
Renner, S.S., and C.M. Zohner. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics 49: 165–82. https://doi.org/10.1146/annurev-ecolsys-110617-062535
Rey, B., A. Fuller, D. Mitchell, et al. 2017. Drought-induced starvation of aardvarks in the Kalahari: An indirect effect of climate change. Biology Letters 13: 20170301. https://doi.org/10.1098/rsbl.2017.0301
Roggatz, C.C., M. Lorch, J.D. Hardege, et al. 2016. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Global Change Biology 22: 3914–26. https://doi.org/10.1111/gcb.13354
Russo, S., A.F. Marchese, J. Sillmann, et al. 2016. When will unusual heat waves become normal in a warming Africa? Environmental Research Letters 11: 054016. https://doi.org/10.1088/1748-9326/11/5/054016
Samways, M.J. 2005. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquatic Conservation 15: S101–S107. https://doi.org/10.1002/aqc.694
Serdeczny, O., S. Adams, F. Baarsch, et al. 2017. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Regional Environmental Change 17: 1585–600. https://doi.org/10.1007/s10113-015-0910-2
Simmons, R.E., P. Barnard, W.R.J. Dean, et al. 2004. Climate change and birds: Perspectives and prospects from southern Africa. Ostrich 75: 295–308. https://doi.org/10.2989/00306520409485458
Sinervo, B., F. Mendez-De-La-Cruz, D.B. Miles, et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894–99. https://doi.org/10.1126/science.1184695
Siraj, A.S., M. Santos-Vega, M.J. Bouma, et al. 2014. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343: 1154–58. https://doi.org/10.1126/science.1244325
Smith, A., M.C. Schoeman, M. Keith, et al. 2016. Synergistic effects of climate and land-use change on representation of African bats in priority conservation areas. Ecological Indicators 69: 276–83. http://doi.org/10.1016/j.ecolind.2016.04.039
Storlazzi, C.D., S.B. Gingerich, A. van Dongeren, et al. 2018. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Science Advances 4: eaap9741. https://doi.org/10.1126/sciadv.aap9741
Strydom, S., and M.J. Savage. 2016. A spatio-temporal analysis of fires in South Africa. South African Journal of Science 112: 1–8. https://doi.org/10.17159/sajs.2016/20150489
Thieme, M.L., B. Lehner, R. Abell, et al. 2010. Exposure of Africa’s freshwater biodiversity to a changing climate. Conservation Letters 3:324–31. https://doi.org/10.1111/j.1755-263X.2010.00120.x
Thomas, C.D., A. Cameron, R.E. Green, et al. 2004. Extinction risk from climate change. Nature 427: 145–48. https://doi.org/10.1038/nature02121
Tuqa, J.H., P. Funston, C. Musyoki, et al. 2014. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya. Global Ecology and Conservation 2: 1–10. https://doi.org/10.1016/j.gecco.2014.07.006
Uhe, P., S. Philip, S. Kew, et al. 2017. Kenya drought, 2016. https://wwa.climatecentral.org/analyses/kenya-drought-2016
Valenzuela, N., and V. Lance. 2004. Temperature-Dependent Sex Determination in Vertebrates (Washington: Smithsonian Books). https://doi.org/10.5479/si.9781944466213
van Vliet, M.T., D. Ludwig, and P. Kabat. 2013. Global streamflow and thermal habitats of freshwater fishes under climate change. Climate Change 121: 739–54. https://doi.org/10.1007/s10584-013-0976-0
van Wilgen, N.J., V. Goodall, S. Holness, et al. 2016. Rising temperatures and changing rainfall patterns in South Africa’s national parks. International Journal of Climatology 36: 706–21. https://doi.org/10.1002/joc.4377
Vickery, J.A., S.R. Ewing, K.W. Smith, et al. 2014. The decline of Afro‐Palaearctic migrants and an assessment of potential causes. Ibis 156: 1–22. https://doi.org/10.1111/ibi.12118
Vijay, V., S.L. Pimm, C.N. Jenkins, et al. 2016. The impacts of oil palm on recent deforestation and biodiversity loss. PloS ONE 11: e0159668. https://doi.org/10.1371/journal.pone.0159668
Vittor, A.Y., R.H. Gilman, J. Tielsch, et al. 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene 74: 3–11. https://doi.org/10.4269/ajtmh.2006.74.3
Wang, X., F. Chen, J. Zhang, et al. 2010. Climate, desertification, and the rise and collapse of China’s historical dynasties. Human Ecology 38: 157–72. https://doi.org/10.1007/s10745-009-9298-2
Warren, R., J. Price, J. VanDerWal, et al. 2018. The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Climatic Change 147: 395–409. https://doi.org/10.1007/s10584-018-2158-6
Watts, N., W.N. Adger, S. Ayeb-Karlsson, et al. 2017. The Lancet Countdown: Tracking progress on health and climate change. Lancet 389: 1151–64. https://doi.org/10.1016/S0140-6736(16)32124-9
Weiss, H., and R.S. Bradley. 2001. What drives societal collapse? Science 291: 609–10. https://doi.org/10.1126/science.1058775
Whitehead, P., R. Wilby, R. Battarbee, et al. 2009. A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal 54:101–23. https://doi.org/10.1623/hysj.54.1.101
Whittington-Jones, G.M., R.T.F. Bernard, and D.M. Parker. 2011. Aardvark burrows: A potential resource for animals in arid and semi-arid environments. African Zoology 46: 362–70. https://doi.org/10.3377/004.046.0215
Wiens, J.J. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biology 14: e2001104. https://doi.org/10.1371/journal.pbio.2001104
Wiley, E.M., and A.R. Ridley. 2016. The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour 117: 187–95. https://doi.org/10.1016/j.anbehav.2016.05.009
Williams, J.W., S.T. Jackson, and J.E. Kutzbach. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences 104: 5738–42. https://doi.org/10.1073/pnas.0606292104
WRI (World Resources Institute). 2019 Climate analysis indicators tool: WRI’s climate data explorer. http://cait2.wri.org
Zabel, F., B. Putzenlechner, and W. Mauser. 2014. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9: e107522. https://doi.org/10.1371/journal.pone.0107522
Zietsman, J., L.L. Dreyer, and K.J. Esler. 2008. Reproductive biology and ecology of selected rare and endangered Oxalis L. (Oxalidaceae) plant species. Biological Conservation 141: 1475–83. http://doi.org/10.1016/j.biocon.2008.03.017