Skip to main content
Biology LibreTexts

15.8: From Genetic Engineering and Genetic Modification

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    By enabling us to focus on how genes and their regulation have evolved, these genomic, transcriptomic and proteomic technologies have vastly increased our knowledge of how cells work at a molecular level. We continue to add to our knowledge of disease process and in at least a few cases, how we can treat disease. The use of technologies to genetically modify organisms is more controversial, despite the best of human intentions. Some genetically modified organisms (GMOs) aim to increase food productivity to better feed the world. The introduction ‘beneficial’ genes into some GMOs have made:

    • drought-resistant crops to increase the range where major food crops can be grown.
    • pest-resistant crops to reduce reliance on environmentally toxic chemical pesticides.
    • herbicide-resistant crops that survive chemicals used to destroy harmful plants.

    The quest for “improved” plant and animal varieties has been going on since before recorded history. Farmers have been cross-breeding cows, sheep, dogs, and crop varieties from corn to wheat, hoping to find faster growing, larger, hardier, (you name it) varieties. It is the manipulation of DNA (the essence of the genetic material itself) that is at the root of controversy. Controversy is reflected in opinions that GMO foods are potentially dangerous, and that their cultivation should be banned. However, the general consensus is that attempting to ban GMOs is too late! In fact, you are probably already partaking of some GMO foods without even knowing it. Perhaps the good news is that after many years of GMO crops already in our food stream, the emerging scientific consensus is that GMO foods are no more harmful than unmodified foods. The current debate is whether or not to label foods that are (or contain) GMO ingredients as genetically modified.

    In an odd but perhaps amusing take on the discomfort some folks feel about GMOs, a startup company has genetically modified Petunias. When grown in water, their flowers are white, but when ‘watered’ with beer, they will produce pink flowers or purple flowers depending on how much beer they get (Check it out at Can Beautiful Flowers Change Face?). According to the company, they seek “to bring what it sees as the beauty of bioengineering to the general public” (and perhaps some profit as well?).

    More recently, we have CRISPR and related tools that can precisely edit gene (in fact any DNA) sequences. And unlike the “quack medicines” of old, these tools have the real potential to cure disease, destroy disease-carrying vectors, cure cancer, improve crops and possibly alter the course of evolution. The speed with which one can accomplish such good (or evil) is truly awesome.

    This page titled 15.8: From Genetic Engineering and Genetic Modification is shared under a CC BY license and was authored, remixed, and/or curated by Gerald Bergtrom.

    • Was this article helpful?