Skip to main content
Biology LibreTexts

1.11: Reproduction and sex

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Reproduction is an essential component of organisms—organisms are 'living things' that can replicate themselves, i.e., reproduce. While some other 'living things' (e.g., cells, some organelles) can reproduce, many forms of life cannot (e.g., tissues, organs (usually) , many communities). We have defined organisms as biological entities that are discrete in time , i.e., they have a beginning and ending ; organisms originate as the result of a reproduction event carried out by some already existing organism(s).


    • Reproduction — single celled organisms
    • Reproduction — multi-cellular organisms
    • Reproduction and dispersal in space
    • Sex
    • Examples from the green, red and brown algae
      • Chlamydomonas
      • Oedogonium
      • Fucus
      • Saprolegnia
      • Lamanaria
      • Ulva
      • Porphyra
      • Polysiphonia

    Reproduction by budding in brewer's yeast. The nucleus spans both parent cell and daughter as chromosomes are being delivered to the daughter cell. The daughter cell has already received a mitochondrion and other cellular organelles. Yeast reproduction can involve sex but rarely does.

    Reproduction single celled organisms

    For single celled organisms, reproduction is a familiar and conceptually simple process (although the cellular details are far from simple!)–cell division. The original cell is partitioned by the synthesis and deposition ofa new boundary (Figure 1). For all cells, the boundary includes two plasma membranes (one for each cell) and for organisms with a cell wall the new boundary also has wall material between the two membranes. Note that for cell division to be a means of reproduction the daughter cell needs to detach from its parent celleither immediately following cell division or at some point in the future. Otherwise the new cell is simply increasing the size of the existing organism.

    Two large cells, one larger parent cell with the smaller daughter cell on the right. The cells are both white and you can see the organelles (mitochondria, nucleus, etc) in both
    Figure 1 Reproduction by budding in brewer's yeast. The nucleus spans both parent cell and daughter as chromosomes are being delivered to the daughter cell. The daughter cell has already received a mitochondrion and other cellular organelles. Yeast reproduction can involve sex but rarely does.

    The original cell need not be divided equally , but both cells must be provisioned with whatever is required for the cell to maintain itself , in particular it needs genetic information in the form of DNA. Consequently, before the cell divides it needs to replicate its DNA and give each daughter cell a copy. For eukaryotic organisms , the DNA is packaged in units, chromosomes, that replicate before division, with one copy going to each daughter cell , i.e. the process of mitosis. Also present in eukaryotic cells are organelles (e.g. mitochondria) that need to replicate before cell division with at least one ending up in each daughter cell. For photosynthetic organisms the same would be true for plastids that develop into chloroplasts. Remember that most biologists consider mitochondria and plastids to be remnants of unicellular organism s and their ability to divide is support for this idea.

    Reproduction has to involve growth at some point but, as discussed in Chapter 7, growthmight come after cell division (a cell is cut in half and then each half grows to full size) or before (a cell grows to twice its normal size and divides); ultimately reproduction requires that the organism acquire material, but this does notneed tobe a direct part of reproduction.

    Although basically simple in outline, cell division, and the reproduction that it brings about in unicellular organisms, involves a myriad of details, some of which are unique to particular groups and are used to unite (classify) organisms.

    Reproductionmulti-cellular organisms

    A thick, cactus leaf with smaller leaves growing off of it
    Figure 2 Bryophyllum crenatodaigremontianum. Note the plantlets at the margin of the leaf. These are easily dislodged and will fall to the ground, root and continue growing.

    Reproduction in multicellular organisms involves another level of complexity because it requires the coordinated production of multiple cell types positioned in time and space in ways that achieve a functional organism(i.e., a developmental process). The information to direct this development is present in the DNA, and since all cells possess the same DNA, all cells of an organism potentially could develop into a multicellular organism.However, most cells are unable to express the required information and thus are NOT able to proliferate and grow into a new organism. The developmental potential that can transform a single cell into a multicellular organism generally only finds expression under very limited circumstances. For most familiar organisms (mammals) this potential is only revealed in a single cell, the zygote(defined and discussed below). In these organisms, in spite of the fact that all cells have the same genetic information, only the zygote uses it to develop into a new organismas it undergoes embryogenesis and transforms into an embryo. However, in many of the organisms studied in this coursethisdevelopmental potential is encounteredmore frequently, and cells that aren't zygotes can develop intonew multicellular organisms in a process described as somatic embryogenesis. This may occur spontaneously or may be induced to occur. Bryophyllum, or mother plant (Figure 2), nicely illustrates this. On the margins of its leaves new plants develop. This is possible because certain leaf cells behave like a zygote, using their potential to develop into a new organism (at least they will be new organisms when they detach from the parent plant). Another plant exhibiting the same ability is bulb-bearing fern (Figure 3) which also produces structures on its leaves that detach and grow into new plants.

    The branch of a fern. Several mature leaves grow off of it, as well as several small buds growing off of the branch
    Figure 3 Cystopteris bulbifera, bulb bearing fern. The roundish green structures are easily dislodged. The small brown dots produce spores, another means of reproduction

    New multicellular organisms do not necessarily have to originate from the proliferation of a single cell. Reproduction can be achieved by the cleaving of an existing organism into two or more parts, as long as the resultant pieces of an organism are capable of regenerating the missing parts, or if the organism is so simple that it doesn 't have parts, e.g., a filamentous algae or a fungus. Such a pattern of reproduction is very common for many of the organisms covered in this book. Since a new organism can be produced by breaking a piece off an existing organism, a means of enhancing reproduction would be to have pieces that easily break off. This happens in Bryophyllum and in bulb-bearing ferns and in many other organisms as well. Both mosses and liverworts commonly produce' splash cups', cup shaped organs (Figure 4) that have at their bottom clusters of cells packaged intodisk-shapedgemmae (singular gemma) that are easily dislodged and can be thrown out of the cup by a water droplet whose force isfocused by the shape of the cup.

    Further Readings

    Reproduction and dispersal in space

    Liverwort growing between rocks, some of the leaves look flat and have bunched edges, some grow in small coiled "cups"
    Figure 4 Splash cups in Marchantia, a complex thalloid liverwort. The small pieces of tissue visible inside the cup are the gemmae.

    The phenomenon of splash cups points out that reproduction isn 't just about making new organisms, it is also about moving organisms around, i.e., dispersal. For many of the organisms dispersal may be the most significant aspect of reproduction, far more important than the making of a new individual. For familiar (determinate) organisms like mammals, reproduction is the only way to be perpetuated through time. In contrast, organisms that are indeterminate can potentially live forever, so continuation through time maynot be a significant consequence of reproduction, butdispersal often is. Environments are dynamic both in their physical conditions and their biotic conditions, thus the fact that an organism can survive at a particular time in a particular place does not ensure that it will be able to do so in the future. Particularly for the organisms covered in this class, most of whom are immobile, it is often the case that reproduction is less about making new individuals and more about getting to new areas.' Pando', the clone of aspengrowing in Utah, apparently has perpetuated itself for 80, 000 years just by growing. Although in the past 80, 000 years it has spread to new areas, it is not moving around very quickly. And, significantly, it is growing in an area where seedling establishment is impossible (i.e., conditions are less hospitable now than they used to be).

    Getting to new areas involves the production of propagules, a unit that not only makes new organisms (reproduction), it also can put them in a new place. A fungus that produces a million spores may seem impressive but the consequences in its immediate area may be trivial. Similarly, a pine tree that produces thousands of seeds may be doing nothing to its functional population size at that site and at that time; the more significant effect of producing propagules is enhancing the possibility of establishing a population at some distant site or this site at some time in the future. Common propagules are spores and seeds but certainly the 'bulbs' of bulb-bearing ferns and the gemmae of mosses and liverworts should be considered propagules as well.

    Probably the most significant feature that most propagules possess that enhances their dispersal ability is the fact that they are generally inactive, 'dormant' . A general feature of cells and organisms is that the less active they are the less sensitive they are to a variety of 'insults' , in particular desiccation and adverse temperatures. Cells and tissues that are in an inactive state, e.g., most spores, seeds, tree buds in the winter, can withstand conditions that active tissues cannot. The changes that accompany inactivity include changes in membrane and protein structure. An indicator of inactivity is a low metabolic (respiratory) rate associated with a general lack of any cellular activity such as protein synthesis or cytoplasmic streaming. Because of their inactivity, many spores can survive prolonged periods without the basic requirements that most organism require: moisture, matter and energy availability, temperatures within a particular range. This aids in dispersal simply because the propagule can travel longer distances while still being viable. Becoming dormant is a physiological process that may be triggered by specific environmental conditions or may simply be an aspect of a developmental pattern, e.g., a cell is programmed to become inactive soon after being created. What triggers the resumption of activity in a propagule varies from the return to 'favorable conditions' , e.g., warmth and moisture, to more specific environmental cues, e.g., photoperiod. Some of these are discussed in Chapter 16.

    The two common propagules found in the organisms covered here are spores and seeds. Seeds are only found in some plants and will be discussed in depth later. For now, simply appreciate that seeds function both in dispersal and reproduction. Spores are found in almost all of the organisms covered here (Bacteria, Archaea, Fungi, most protists, all plants (including those that have seeds). Their function varies considerably, from being a structure primarily associated with perpetuation in time (endospores of bacteria, akinites of cyanobacteria, zygospores of bread molds) to functioning primarily for reproduction (zoospores of water molds and Oedegonium) or primarily for sex (considered later in this chapter and in Chapter 14).

    Many organisms produce multiple types of spores which may differ in their structure and function, e.g., degree of dormancy, specific requirements required for resumption of growth (see bread molds, Oedogonium ). A common type of spore is called a zoospore, a flagellated spore found in many of the green algae, most of the water molds , many brown algae , and many of the chytrids (the only fungi that possess flagellated cells). Zoospores reflect the costs and benefits tied to mobility: their flagella provide them with the mobility that unflagellated cells lack, but flagella require metabolic activity and consequently zoospores have limited lifespans and this limits their mobility and dispersal ability. Another trade-off relates to size. Spores are single cells and generally very small. This enhances mobility by allowing for dispersal by wind. However, any spore benefits by storing material that will be utilized in establishing the new growth following spore germination. The more material saved the heavier the spore is and the more limited its dispersal. These same considerations are significant to seeds, which are multicellular propagules considered in a Chapter 14.

    Although r eproduction is obviously of significance to the organism(s) that are produced, o ne final general point about reproduction concerns its impact on the 'parent' organism. Because reproduction utilizes material and energy that might otherwise be used to perpetuate the life of the parent organism, r eproduction generally diminishes the likelihood that the parent will be perpetuated through time. The magnitude of this detrimental effect varies from highly significant, when reproduction insures the death of the parent (salmon, wheat plants) to extremely trivial, when reproduction has virtually no effect on the survival of the parent. Because of this impact on the reproducing organisms, reproductive effort is evolutionarily modified and often controlled by specific environmental cues (Chapter 16). Besides the impact at the individual level , reproduction also has potential consequences a t the population/species level , increasing the population size and perpetuating the species through time. Th is effect is strongly dependent upon on other conditions.


    Most students equate sex and reproduction, but they really are two separate processes that happen to be combined in the organisms that we are most familiar with. Reproduction is about making new organisms; sex is about mixing the genetic information of two organisms. Bacteria and Archaea exchange genetic information by several different processes (conjugation, transformation, transduction) but none of these are considered to be sex. Sex is defined as a particular type of genetic exchange that can only happen in organisms with chromosomes (eukaryotic organisms). Sex requires the fusion of two cells (syngamy), producing a cell with twice the number of chromosomes as either of the parent cells. Generally, both of the fusing cells have one copy of each chromosome and are described as being haploid, while the fused cell has two copies of each chromosome and is described as being diploid. Sex also requires a mechanism that can produce haploid cells from diploid cells. This process is meiosis, unfortunately often described as a 'type of cell division, ' but is more aptly described as a process involving two cell divisions that produces haploid cells from diploid cells. Keep in mind that the haploid cells that are produced don 't simply separate the chromosomes of a diploid cell into two groups, the two groupst each have one copy of each ' type of chromosome '. Consider Arabidopsis (' Mouse-ear cress'), the most studied plant in the world. If one looks at the chromosomes of a diploid cell, one sees ten chromosomes. But closer examination of the chromosomes reveals that there are actually five distinct types of chromosomes present, and their are two chromosomes of each type. (A chromosome can be recognized by its size and shape. And genetic analysis reveals that they are also distinct in the genes that they possess.) In Arabidopsis, meiosis produces cells with five chromosomes not ten, moreover, it produces cells that have one of each type of chromosome, i.e., a complete set.

    Sex is a process that allows genetic material (genes) from two different organisms to be mixed. It almost always involves producing new individuals (reproduction). However, the unicellular organism Paramecium demonstrates that sex can happen with no reproduction: two cells, each with a diploid nucleus join temporarily. The diploid nucleus of each cell undergoes meiosis to form four haploid nuclei, three of these disintegrate and the remaining one divides mitotically to produce two haploid nuclei in each of the joined cells. Each cell sends one of these two nuclei to the other cell so that both cells have two nuclei, its 'original' one and one that came from its partner. Finally, in each cell, the two nuclei fuse to form a diploid nucleus, the original condition. Thus, the cells have undergone the sexual cycle but have not reproduced: there were two cells at the beginning and there are two cells at the end. Although sex and reproduction are different process, they often (especially in familiar organisms) occur simultaneously.

    Specifically, sex requires:

    • Fusion of two cells and the subsequent fusion of the two nuclei in a process called syngamy, combining the genetic information of each. A ssuming that the original cells had one copy of each gene (i.e., the cells were haploid), the product of fusion will have two copies of each gene, i.e., will be diploid. Only special cells have the ability to fuse with one another and these cells are called gametes .
    • A process (meiosis) that starts with a diploid cell and produces haploid cells, each with one copy of each chromosome. This process is feasible in eukaryotes because they have genes that are packaged into structures (chromosomes) that can be sorted and moved. Describing a cell as 'having two copies of each gene' is the same as saying that the cell has 'two copies of each chromosome' ( in fact it is more accurate since it is commonly the case that genes often get replicated, i.e. a haploid cell commonly has multiple copies of a gene, sometimes all copies are on one chromosom e, other times it has copies of a gene on several chromosomes.)

    Most students consider sex to be related to the fusion process, but it is important to appreciate that meiosis is also an essential part. The essential components of s ex (syngamy and meiosis) are sometimes distantly separated in time and may be separated between organisms. We will study a number of situations where two types of organisms are produced, both associated with the same species; one organism develops from a diploid cell (zygote) produced by syngamy and is diploid; the other results from a haploid cell (spore) and is haploid. However, there are other organisms where the cell created by syngamy immediately undergoes meiosis , i.e., both steps of sex, syngamy and meiosis, occur in the same cell. As we will see there are lots of variations on the basic sexual cycle.

    Sex is not universal. Many organisms, including some very successful groups ( Archaea and Bacteria , the endomycorhizal forming Glomeromycota, most dinoflagellates, many fungi) have no sexual process. While sex is generally considered to be significant to the process of evolution because it promotes the variation that natural selection can act upon, it is important to realize that variation and evolution can occur without sex and that the success of a group of organisms at one point in time , and through time , is possible even if that group has no sex.

    For multicellular or colonial organisms, reproduction, unless occurring by fragmentation of an already existing colony/organism, requires a cell that will proliferate and form the colony/organism. In the familiar case of humans, that cell is the zygote. But in many organisms it is a haploid product of meiosis, generally called a spore, that has the developmental potential to proliferate and form a multicellular organism. And for all plants and many of the macroalgae, multicellular/colony development can proceed both from a zygote and from a haploid spore produced by meiosis. Such organisms will alternate between a haploid stage derived from the spore and a diploid stage derived from the zygote.

    The rest of this chapter will illustrate several examples of sex and reproduction, showing a diversity of patterns from several different groups. It is important to realize that for many of the larger groups (generally phyla) that we study, in particular for the macroalgae (green, red and brown algae), sex and reproduction are NOT consistent across the group, i.e. there is no single, standard pattern of sex and reproduction. In separate chapters we will consider groups that do show some consistency: with several of the fungal phyla (Chapter 12), with non-seed plants (Chapter 13), with seed plants (Chapters 14 and 15).


    Chlamydomonas is a unicellular green alga that primarily reproduces asexually (left side of diagram below), i.e, . most new cells are not the product of a sexual process. On the right side of the diagram is shown the sexual process which is trivial in terms of reproductive effort but significant for the variation that it creates and also because the thick-walled 'zygospore' (so named because it develops from a zygote) is able to withstand hostile conditions (dispersal in time). The sexual process is 'triggered' by conditions that make normally asexual cells behave like gametes, with the ability to fuse with other cells. The only diploid cell is the zygospore.

    diagram of cell meiosis: "cell undergoes two divisions to form four cells inside of it, this cell ruptures to release four cells, these cells become "special" and fuse to another cell to form a diploid cell, this cell develops a thick cell wall, and then undergoes meiosis to reveal haploid cell
    Figure 5 Sexual (on the right) and asexual (on the left) reproduction in Chlamydomonas.
    A long, stick like structure which has notches of individuals cells which each undergo meiosis
    Figure 6 Sexual (on the right) and asexual (on the left) reproduction in the filamentous green algae Oedogonium.


    Oedogonium, a filamentous green algae, shows the same basic patter as Chlamydomonas except that: (1) it is colonial, not unicellular, (2) in the sexual cycle the gametes do not look alike but are structurally very different with one (called the egg) being large and immobile and the other (called sperm) being much smaller and mobile. Sperm are released from the colonial filament to swim to and join with the egg (syngamy). Both the egg cell and cell producing sperm need to develop a hole in the cell wall in order for the sperm to escape and enter the egg cell. The zygote develops into a zygospore that is released from the filament and eventually undergoes meiosis and releases flagellated zoospores that, like the asexual zoospores, are capable of attaching to a substrate and developing into a filament, i.e., the cell that initiates a colonial organism is not a diploid zygote, rather it is haploid zoospore.

    The rockweed Fucus gardneri, Once mature the tips of the blades fill receptacles with with air and mucilage. They look shiny and have raised dots on their surface
    Figure 7 Fucus (rockweed), diploid individual, note the swollen branch tips. These contain multiple structures called conceptacles (see figures below) with openings to the outside, visible as dots.


    Fucus is a multicellular brown algae with a life cycle comparable to humans (Figure 7-9). The organism is diploid and the only haploid cells are gametes, which come in two varieties: a large, unflagellated egg and a small, flagellated sperm. Unlike in humans, gametes are released to the environment and syngamy occurs there. The zygote is formed outside of a parental gamete-forming organism. The zygote develops into a new diploid organism, which, unlike humans, generally can produce both male and female gametes. Note that in contrast to the two previous examples the zygote divides mitotically and does not undergo meiosis, hence there is a diploid organism, not simply a single diploid cell.

    This page titled 1.11: Reproduction and sex is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by George M. Briggs (Milne Library) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?