18.3: Diversity of Mammalia
- Page ID
- 139324
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)By the end of this section, you will be able to do the following:
- Name and describe the distinguishing features of the three main groups of mammals
- Identify the major clades of eutherian mammals
There are three major groups of living mammals: monotremes (prototheria), marsupials (metatheria), and placental (eutheria) mammals. The eutherians and the marsupials together comprise a clade of therian mammals, with the monotremes forming a sister clade to both metatherians and eutherians. These three groups differ greatly in their mode of reproduction.
Monotremes
There are very few living species of monotremes: the platypus and four species of echidnas, or spiny anteaters. The leathery-beaked platypus belongs to the family Ornithorhynchidae (“bird beak”), whereas echidnas belong to the family Tachyglossidae (“sticky tongue”) (Figure 29.40). The platypus and one species of echidna are found in Australia, and the other species of echidna are found in New Guinea. Monotremes are unique among mammals because they lay eggs, rather than giving birth to live young. The shells of their eggs are not like the hard shells of birds, but have a leathery shell, similar to the shells of reptile eggs. Monotremes retain their eggs through about two-thirds of the developmental period, and then lay them in nests. A yolk-sac placenta helps support development. The babies hatch in a fetal state and complete their development in the nest, nourished by milk secreted by mammary glands opening directly to the skin. Monotremes, except for young platypuses, do not have teeth. Body temperature in the monotreme species is maintained at about 30°C, considerably lower than the average body temperature of marsupial and placental mammals, which are typically between 35 and 38°C.
Marsupials
Over 2/3 of the approximately 330 living species of marsupials are found in Australia, New Guinea, and surrounding islands, with the rest, nearly all various types of opossum, found in the Americas, especially South America. Australian marsupials include the kangaroo, koala, bandicoot, Tasmanian devil (Figure 29.41), and several other species. Like monotremes, the embryos of marsupials are nourished during a short gestational period (about a month in kangaroos) by a yolk-sac placenta, but with no intervening egg shell. Some marsupial embryos can enter an embryonic diapause, and delay implantation, suspending development until implantation is completed. Marsupial young are also effectively fetal at birth. Most, but not all, species of marsupials possess a pouch in which the very premature young reside, receiving milk and continuing their development. In kangaroos, the young joeys continue to nurse for about a year and a half.
Eutherians (placentals) are the most widespread and numerous of the mammals, occurring throughout the world. Eutherian mammals are sometimes called “placental mammals” because all species possess a complex chorioallantoic placenta that connects a fetus to the mother, allowing for gas, fluid, and nutrient exchange. There are about 4,000 species of placental mammals in 18 to 20 orders with various adaptations for burrowing, flying, swimming, hunting, running, and climbing. In the evolutionary sense, they have been incredibly successful in form, diversity, and abundance. The eutherian mammals are classified in two major clades, the Atlantogenata and the Boreoeutheria. The Atlantogeneta include the Afrotheria (e.g., elephants, hyraxes, and manatees) and the Xenarthra (anteaters, armadillos, and sloths). The Boreoeutheria contain two large groups, the Euarchontoglires and the Laurasiatheria. Familiar orders in the Euarchontoglires are the Scandentia (tree shrews), Rodentia (rats, mice, squirrels, porcupines), Lagomorpha (rabbits and hares), and the Primates (including humans). Major Laurasiatherian orders include the Perissodactyla (e.g., horses and rhinos), the Cetartiodactyla (e.g., cows, giraffes, pigs, hippos, and whales), the Carnivora (e.g., cats, dogs, and bears), and the Chiroptera (bats and flying foxes). The two largest orders are the rodents (2,000 species) and bats (about 1,000 species), which together constitute approximately 60 percent of all eutherian species.
Characteristics of Order Primates
All primate species possess adaptations for climbing trees, as they all descended from tree-dwellers. This arboreal heritage of primates has resulted in hands and feet that are adapted for climbing, or brachiation (swinging through trees using the arms). These adaptations include, but are not limited to: 1) a rotating shoulder joint, 2) a big toe that is widely separated from the other toes (except humans) and thumbs sufficiently separated from fingers to allow for gripping branches, and 3) stereoscopic vision, two overlapping fields of vision from the eyes, which allows for the perception of depth and gauging distance. Other characteristics of primates are brains that are larger than those of most other mammals, claws that have been modified into flattened nails, typically only one offspring per pregnancy, and a trend toward holding the body upright.
Order Primates is divided into two groups: Strepsirrhini (“turned-nosed”) and Haplorhini (“simple-nosed”) primates. Strepsirrhines, also called the wet-nosed primates, include prosimians like the bush babies and pottos of Africa, the lemurs of Madagascar, and the lorises of Southeast Asia. Haplorhines, or dry-nosed primates, include tarsiers (Figure 29.42) and simians (New World monkeys, Old World monkeys, apes, and humans). In general, strepsirrhines tend to be nocturnal, have larger olfactory centers in the brain, and exhibit a smaller size and smaller brain than anthropoids. Haplorhines, with a few exceptions, are diurnal, and depend more on their vision. Another interesting difference between the strepsirrhines and haplorhines is that strepsirrhines have the enzymes for making vitamin C, while haplorhines have to get it from their food.
This page titled 18.3: Diversity of Mammalia is a derivative of Biology 2e by OpenStax that is licensed under a CC BY 4.0 license.