10.1: Phylum Rotifera
- Page ID
- 139095
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)By the end of this section, you will be able to do the following:
- Describe the unique anatomical and morphological features of rotifers
Introduction to Lophotrochozoa
Animals belonging to superphylum Lophotrochozoa are triploblastic (have three germ layers) and unlike the cnidarians, they possess an embryonic mesoderm sandwiched between the ectoderm and endoderm. These phyla are also bilaterally symmetrical, meaning that a longitudinal section will divide them into right and left sides that are superficially symmetrical. In these phyla, we also see the beginning of cephalization, the evolution of a concentration of nervous tissues and sensory organs in the head of the organism—exactly where a mobile bilaterally symmetrical organism first encounters its environment.
Lophotrochozoa are also protostomes, in which the blastopore, or the point of invagination of the ectoderm (outer germ layer), becomes the mouth opening into the alimentary canal. This developmental pattern is called protostomy or “first mouth.” Protostomes include acoelomate, pseudocoelomate, and eucoelomate phyla. The coelom is a cavity that separates the ectoderm from the endoderm. In acoelomates, a solid mass of mesoderm is sandwiched between the ectoderm and endoderm and does not form a cavity or “coelom,” leaving little room for organ development; in pseudocoelomates, there is a cavity or pseudocoelom that replaces the blastocoel (the cavity within the blastula), but it is only lined by mesoderm on the outside of the cavity, leaving the gut tube and organs unlined; in eucoelomates, the cavity that obliterates the blastocoel as the coelom develops is lined both on the outside of the cavity (parietal layer) and also on the inside of the cavity, around the gut tube and the internal organs (visceral layer).
Eucoelmate protostomes are schizocoels, in which mesoderm-producing cells typically migrate into the blastocoel during gastrulation and multiply to form a solid mass of cells. Cavities then develop within the cell mass to form the coelom. Since the forming body cavity splits the mesoderm, this protostomic coelom is termed a schizocoelom. As we will see later in this chapter, chordates, the phylum to which we belong, generally develop a coelom by enterocoely: pouches of mesoderm pinch off the invaginating primitive gut, or archenteron, and then fuse to form a complete coelom. We should note here that a eucoelomate can form its “true coelom” by either schizocoely or enterocoely. The process that produces the coelom is different and of taxonomic importance, but the result is the same: a complete, mesodermally lined coelom.
Most organisms placed in the superphylum Lophotrochozoa possess either a lophophore feeding apparatus or a trochophore larvae (thus the contracted name, “lopho-trocho-zoa”). The lophophore is a feeding structure composed of a set of ciliated tentacles surrounding the mouth. A trochophore is a free-swimming larva characterized by two bands of cilia surrounding a top-like body. Some of the phyla classified as Lophotrochozoa may be missing one or both of these defining structures. Nevertheless their placement with the Lophotrochozoa is upheld when ribosomal RNA and other gene sequences are compared. The systematics of this complex group is still unclear and much more work remains to resolve the cladistic relationships among them.
Phylum Rotifera
The rotifers ("wheel-bearer") belong to a group of microscopic (about 100 µm to 2 mm) mostly aquatic animals that get their name from the corona—a pair of ciliated feeding structures that appear to rotate when viewed under the light microscope (Figure 28.17). Although their taxonomic status is currently in flux, one treatment places the rotifers in three classes: Bdelloidea, Monogononta, and Seisonidea. In addition, the parasitic “spiny headed worms” currently in phylum Acanthocephala, appear to be modified rotifers and will probably be placed into the group in the near future. Undoubtedly the rotifers will continue to be revised as more phylogenetic evidence becomes available.
The pseudocoelomate body of a rotifer is remarkably complex for such a small animal (roughly the size of a Paramecium) and is divided into three sections: a head (which contains the corona), a trunk (which contains most of the internal organs), and the foot. A cuticle, rigid in some species and flexible in others, covers the body surface. They have both skeletal muscle associated with locomotion and visceral muscles associated with the gut, both composed of single cells. Rotifers are typically free-swimming or planktonic (drifting) organisms, but the toes or extensions of the foot can secrete a sticky material to help them adhere to surfaces. The head contains a number of eyespots and a bilobed “brain,” with nerves extending into the body.
Rotifers are commonly found in freshwater and some saltwater environments throughout the world. As filter feeders, they will eat dead material, algae, and other microscopic living organisms, and are therefore very important components of aquatic food webs. A rotifer's food is directed toward the mouth by the current created from the movement of the coronal cilia. The food particles enter the mouth and travel first to the mastax—a muscular pharynx with toothy jaw-like structures. Examples of the jaws of various rotifers are seen in Figure 28.17a. Masticated food passes near digestive and salivary glands, into the stomach, and then to the intestines. Digestive and excretory wastes are collected in a cloacal bladder before being released out the anus.
Link to Learning
Watch this video to see rotifers feeding.
About 2,200 species of rotifers have been identified. Figure 28.18 shows the anatomy of a rotifer belonging to class Bdelloidea. Some rotifers are dioecious organisms and exhibit sexual dimorphism (males and females have different forms). In many dioecious species, males are short-lived and smaller with no digestive system and a single testis. Many rotifer species exhibit haplodiploidy, a method of sex determination in which a fertilized egg develops into a female and an unfertilized egg develops into a male. However, reproduction in the bdelloid rotifers is exclusively parthenogenetic and appears to have been so for millions of years: Thus, all bdelloid rotifers and their progeny are female! The bdelloids may compensate for this genetic insularity by borrowing genes from the DNA of other species. Up to 10% of a bdelloid genome comprises genes imported from related species. Some rotifer eggs are capable of extended dormancy for protection during harsh environmental conditions.
This page titled 10.1: Phylum Rotifera is a derivative of Biology 2e by OpenStax that is licensed under a CC BY 4.0 license.