Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 4 results
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/01%3A_Unit_I-_Structure_and_Catalysis/04%3A_The_Three-Dimensional_Structure_of_Proteins/4.08%3A_Protein_Folding_and_Unfolding_(Denaturation)_-_Dynamics
    This page provides a comprehensive overview of protein folding, detailing the processes involved, such as thermodynamics driving Gibbs free energy changes, kinetics of folding pathways, and the transi...This page provides a comprehensive overview of protein folding, detailing the processes involved, such as thermodynamics driving Gibbs free energy changes, kinetics of folding pathways, and the transition between native, intermediate, and denatured states. It discusses factors influencing protein denaturation, including temperature and chemical denaturants, and the role of molecular chaperones in assisting folding.
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/Unit_IV_-_Special_Topics/32%3A_Biochemistry_and_Climate_Change/32.12%3A__Part_3_-_A_Warmer_World%3A_Temperature_Effects_On_Proteins
    This page covers various learning goals related to biochemistry, particularly focusing on protein thermal stability, denaturation mechanisms, heat-shock responses, adaptations in thermophiles, enzyme ...This page covers various learning goals related to biochemistry, particularly focusing on protein thermal stability, denaturation mechanisms, heat-shock responses, adaptations in thermophiles, enzyme kinetics, and experimental methods for studying thermal effects. It emphasizes the biological importance of these concepts in the context of climate change and their applications in biotechnology and pharmaceuticals.
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/01%3A_Unit_I-_Structure_and_Catalysis/04%3A_The_Three-Dimensional_Structure_of_Proteins/4.09%3A_Protein_Stability_-_Thermodynamics
    The page delves into protein stability, discussing the balance between folding and unfolding dynamics influenced by thermodynamic factors. Key forces like hydrogen bonds, ion pairs, van der Waals forc...The page delves into protein stability, discussing the balance between folding and unfolding dynamics influenced by thermodynamic factors. Key forces like hydrogen bonds, ion pairs, van der Waals forces, and the hydrophobic effect affect protein stability. It highlights experimental approaches, such as site-directed mutagenesis, to study these forces. Environmental factors, such as pH and temperature, also influence protein behavior.
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/01%3A_Unit_I-_Structure_and_Catalysis/04%3A_The_Three-Dimensional_Structure_of_Proteins/4.12%3A_Laboratory_Determination_of_the_Thermodynamic_Parameters_for_Protein_Denaturation
    The page offers a detailed exploration of protein denaturation, highlighting the key thermodynamic parameters such as ??G, ??H, and ??S that are central to understanding protein stability. It covers e...The page offers a detailed exploration of protein denaturation, highlighting the key thermodynamic parameters such as ??G, ??H, and ??S that are central to understanding protein stability. It covers experimental techniques like UV and fluorescence for measuring denaturation, and describes how to interpret denaturation curves to calculate the standard free energy of unfolding.

Support Center

How can we help?