Search
- https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/01%3A_Unit_I-_Structure_and_Catalysis/05%3A_Protein_Function/5.03%3A_B._Other_Allosteric_ProteinsThis page covers the intricacies of allosterism in biochemistry, focusing on myoglobin, hemoglobin, and various enzymes, including lactate dehydrogenase and phosphofructokinases. It discusses structur...This page covers the intricacies of allosterism in biochemistry, focusing on myoglobin, hemoglobin, and various enzymes, including lactate dehydrogenase and phosphofructokinases. It discusses structural transformations in viral enzymes and the significance of Lenacapavir as an HIV drug. The text details the kinetic behaviors of enzymes and the influence of ligand concentrations on activity.
- https://bio.libretexts.org/Courses/Coastline_College/Book-_Cells_-_Molecules_and_Mechanisms_(Wong)/05%3A_Bioenergetics_-_Thermodynamics_and_Enzymes/5.04%3A_Regulation_of_Enzyme_ActivityEnzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation...Enzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation to catalyze the reaction. The inhibitors that do this can do so either reversibly or irreversibly. The irreversible inhibitors are also called inactivators, and reversible inhibitors are generally grouped into two basic types: competitive and non-competitive.
- https://bio.libretexts.org/Courses/Roosevelt_University/BCHM_355_455_Biochemistry_(Roosevelt_University)/08%3A_Enzyme_Regulation/8.01%3A_Regulation_of_Enzyme_ActivityEnzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation...Enzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation to catalyze the reaction. The inhibitors that do this can do so either reversibly or irreversibly. The irreversible inhibitors are also called inactivators, and reversible inhibitors are generally grouped into two basic types: competitive and non-competitive.
- https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology/Book%3A_Cells_-_Molecules_and_Mechanisms_(Wong)/03%3A_Bioenergetics_-_Thermodynamics_and_Enzymes/3.04%3A_Regulation_of_Enzyme_ActivityEnzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation...Enzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation to catalyze the reaction. The inhibitors that do this can do so either reversibly or irreversibly. The irreversible inhibitors are also called inactivators, and reversible inhibitors are generally grouped into two basic types: competitive and non-competitive.
- https://bio.libretexts.org/Courses/Ouachita_Baptist_University/Reyna_Cell_Biology/03%3A_(T1)Enzymes_-/3.04%3A_Regulation_of_Enzyme_ActivityEnzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation...Enzymes can be slowed down or even prevented from catalyzing reactions in many ways including preventing the substrate from entering the active site or preventing the enzyme from altering conformation to catalyze the reaction. The inhibitors that do this can do so either reversibly or irreversibly. The irreversible inhibitors are also called inactivators, and reversible inhibitors are generally grouped into two basic types: competitive and non-competitive.