Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://bio.libretexts.org/Courses/West_Los_Angeles_College/Biotechnology/04%3A_Genetic_Engineering_and_Recombinant_DNA_Technology/4.01%3A_Principles_of_Genetic_Engineering
    Genetic engineering is at the heart of biotechnology. Through the manipulation of an organism's DNA in the laboratory, researchers can add, remove, or change specific genes in an organism, producing ...Genetic engineering is at the heart of biotechnology. Through the manipulation of an organism's DNA in the laboratory, researchers can add, remove, or change specific genes in an organism, producing highly desired traits. This page summarizes the major principles and tools of genetic engineering, in addition to outlining the foundational technique of cloning genes into plasmids and the production of recombinant plasmids.
  • https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Map%3A_Raven_Biology_12th_Edition/17%3A_Biotechnology/17.01%3A_Recombinant_DNA/17.1.03%3A_Introducting_Recombinant_DNA_into_Host_Cells
    Step I: The DNA of a bacterial cell is located in the cytoplasm (1), but also in the plasmid, an independent, circular loop of DNA. The gene to be transferred (4) is located on the plasmid of cell 1 (...Step I: The DNA of a bacterial cell is located in the cytoplasm (1), but also in the plasmid, an independent, circular loop of DNA. The gene to be transferred (4) is located on the plasmid of cell 1 (3), but not on the plasmid of bacterial cell 2 (2). Hence one can easily obtain either double‑ or single‑stranded forms of thes plasmids. {The "blue" comes from the blue‑white screening for recombinants that can be done when the multiple cloning sites are in the b‑galactosidase gene.
  • https://bio.libretexts.org/Bookshelves/Genetics/Working_with_Molecular_Genetics_(Hardison)/Unit_I%3A_Genes_Nucleic_Acids_Genomes_and_Chromosomes/3%3A_Isolating_and_Analyzing_Genes/3.04%3A_Introducting_Recombinant_DNA_into_Host_Cells
    Step I: The DNA of a bacterial cell is located in the cytoplasm (1), but also in the plasmid, an independent, circular loop of DNA. The gene to be transferred (4) is located on the plasmid of cell 1 (...Step I: The DNA of a bacterial cell is located in the cytoplasm (1), but also in the plasmid, an independent, circular loop of DNA. The gene to be transferred (4) is located on the plasmid of cell 1 (3), but not on the plasmid of bacterial cell 2 (2). Hence one can easily obtain either double‑ or single‑stranded forms of thes plasmids. {The "blue" comes from the blue‑white screening for recombinants that can be done when the multiple cloning sites are in the b‑galactosidase gene.

Support Center

How can we help?