Skip to main content
Biology LibreTexts


  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Escobar, F.V., Piwowarski, P., Salewski, J., Michael, N., Lopez, M.F., Rupp, A., Qureshi, B.M., Scheerer, P., Bartl, F., Frankenberg-Dinkel, N. and Siebert, F., 2015. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. Nature chemistry, 7(5), pp.423-430. pdf
    2. Zienicke, B., Molina, I., Glenz, R., Singer, P., Ehmer, D., Escobar, F.V., Hildebrandt, P., Diller, R. and Lamparter, T., 2013. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Journal of Biological Chemistry,288(44), pp.31738-31751. pdf
    3. Zienicke, B., Chen, L.Y., Khawn, H., Hammam, M.A., Kinoshita, H., Reichert, J., Ulrich, A.S., Inomata, K. and Lamparter, T., 2011. Fluorescence of phytochrome adducts with synthetic locked chromophores. Journal of Biological Chemistry, 286(2), pp.1103-1113. pdf
    4. Rottwinkel, G., Oberpichler, I. and Lamparter, T., 2010. Bathy phytochromes in rhizobial soil bacteria. Journal of bacteriology, 192(19), pp.5124-5133. pdf
    5. Scheerer, P., Michael, N., Park, J.H., Nagano, S., Choe, H.W., Inomata, K., Borucki, B., Krauß, N. and Lamparter, T., 2010. Light‐Induced Conformational Changes of the Chromophore and the Protein in Phytochromes: Bacterial Phytochromes as Model Systems. ChemPhysChem, 11(6), pp.1090-1105. pdf
    6. Inomata, K., Khawn, H., Chen, L.Y., Kinoshita, H., Zienicke, B., Molina, I. and Lamparter, T., 2009. Assembly of Agrobacterium Phytochromes Agp1 and Agp2 with Doubly Locked Bilin Chromophores†. Biochemistry, 48(12), pp.2817-2827. pdf
    7. Krieger, A., Molina, I., Oberpichler, I., Michael, N. and Lamparter, T., 2008. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract. Journal of Photochemistry and Photobiology B: Biology, 93(1), pp.16-22. pdf
    8. Inomata, K., Noack, S., Hammam, M.A., Khawn, H., Kinoshita, H., Murata, Y., Michael, N., Scheerer, P., Krauss, N. and Lamparter, T., 2006. Assembly of synthetic locked chromophores with Agrobacterium phytochromes Agp1 and Agp2. Journal of Biological Chemistry, 281(38), pp.28162-28173. pdf
    9. Lamparter, T., 2006. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. BMC bioinformatics, 7(1), p.1. pdf
    10. Oberpichler, I., Molina, I., Neubauer, O. and Lamparter, T., 2006. Phytochromes from Agrobacterium tumefaciens: Difference spectroscopy with extracts of wild type and knockout mutants. FEBS letters, 580(2), pp.437-442. pdf
    11. Lamparter, T., Michael, N., Mittmann, F. and Esteban, B., 2002. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proceedings of the National Academy of Sciences, 99(18), pp.11628-11633. pdf


    AGP2 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?