Skip to main content
Biology LibreTexts

AGP1

  • Page ID
    5507
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Nieder, J.B., Stojković, E.A., Moffat, K., Forest, K.T., Lamparter, T., Bittl, R. and Kennis, J.T., 2013. Pigment–Protein Interactions in Phytochromes Probed by Fluorescence Line Narrowing Spectroscopy. The Journal of Physical Chemistry B, 117(48), pp.14940-14950. pdf
    2. Linke, M., Yang, Y., Zienicke, B., Hammam, M.A., von Haimberger, T., Zacarias, A., Inomata, K., Lamparter, T. and Heyne, K., 2013. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump–IR probe study. Biophysical journal, 105(8), pp.1756-1766. pdf
    3. Njimona, I. and Lamparter, T., 2011. Temperature effects on Agrobacterium phytochrome Agp1. PloS one, 6(10), p.e25977. pdf
    4. Zienicke, B., Chen, L.Y., Khawn, H., Hammam, M.A., Kinoshita, H., Reichert, J., Ulrich, A.S., Inomata, K. and Lamparter, T., 2011. Fluorescence of phytochrome adducts with synthetic locked chromophores. Journal of Biological Chemistry, 286(2), pp.1103-1113. pdf
    5. Rottwinkel, G., Oberpichler, I. and Lamparter, T., 2010. Bathy phytochromes in rhizobial soil bacteria. Journal of bacteriology, 192(19), pp.5124-5133. pdf
    6. Piwowarski, P., Ritter, E., Hofmann, K.P., Hildebrandt, P., von Stetten, D., Scheerer, P., Michael, N., Lamparter, T. and Bartl, F., 2010. Light‐Induced Activation of Bacterial Phytochrome Agp1 Monitored by Static and Time‐Resolved FTIR Spectroscopy. ChemPhysChem, 11(6), pp.1207-1214. pdf
    7. Roeben, M., Hahn, J., Klein, E., Lamparter, T., Psakis, G., Hughes, J. and Schmieder, P., 2010. NMR spectroscopic investigation of mobility and hydrogen bonding of the chromophore in the binding pocket of phytochrome proteins. ChemPhysChem, 11(6), pp.1248-1257. pdf
    8. Scheerer, P., Michael, N., Park, J.H., Nagano, S., Choe, H.W., Inomata, K., Borucki, B., Krauß, N. and Lamparter, T., 2010. Light‐Induced Conformational Changes of the Chromophore and the Protein in Phytochromes: Bacterial Phytochromes as Model Systems. ChemPhysChem, 11(6), pp.1090-1105. pdf
    9. Borucki, B. and Lamparter, T., 2009. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome. Journal of Biological Chemistry, 284(38), pp.26005-26016. pdf
    10. Borucki, B., Seibeck, S., Heyn, M.P. and Lamparter, T., 2009. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Biochemistry, 48(27), pp.6305-6317. pdf
    11. Inomata, K., Khawn, H., Chen, L.Y., Kinoshita, H., Zienicke, B., Molina, I. and Lamparter, T., 2009. Assembly of Agrobacterium Phytochromes Agp1 and Agp2 with Doubly Locked Bilin Chromophores†. Biochemistry, 48(12), pp.2817-2827. pdf
    12. Nieder, J.B., Brecht, M. and Bittl, R., 2008. Dynamic intracomplex heterogeneity of phytochrome. Journal of the American Chemical Society,131(1), pp.69-71. pdf
    13. von Stetten, D., Günther, M., Scheerer, P., Murgida, D.H., Mroginski, M.A., Krauß, N., Lamparter, T., Zhang, J., Anstrom, D.M., Vierstra, R.D. and Forest, K.T., 2008. Chromophore heterogeneity and photoconversion in phytochrome crystals and solution studied by resonance Raman spectroscopy.Angewandte Chemie International Edition, 47(25), pp.4753-4755. pdf
    14. Schumann, C., Groß, R., Wolf, M.M., Diller, R., Michael, N. and Lamparter, T., 2008. Subpicosecond midinfrared spectroscopy of the P fr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Biophysical journal,94(8), pp.3189-3197. pdf
    15. Schumann, C., Groß, R., Michael, N., Lamparter, T. and Diller, R., 2007. Sub‐Picosecond Mid‐Infrared Spectroscopy of Phytochrome Agp1 from Agrobacterium tumefaciens. ChemPhysChem, 8(11), pp.1657-1663. pdf
    16. von Stetten, D., Seibeck, S., Michael, N., Scheerer, P., Mroginski, M.A., Murgida, D.H., Krauss, N., Heyn, M.P., Hildebrandt, P., Borucki, B. and Lamparter, T., 2007. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation.Journal of Biological Chemistry, 282(3), pp.2116-2123. pdf
    17. Inomata, K., Noack, S., Hammam, M.A., Khawn, H., Kinoshita, H., Murata, Y., Michael, N., Scheerer, P., Krauss, N. and Lamparter, T., 2006. Assembly of synthetic locked chromophores with Agrobacterium phytochromes Agp1 and Agp2. Journal of Biological Chemistry, 281(38), pp.28162-28173. pdf
    18. Lamparter, T., 2006. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. BMC bioinformatics, 7(1), p.1. pdf
    19. Oberpichler, I., Molina, I., Neubauer, O. and Lamparter, T., 2006. Phytochromes from Agrobacterium tumefaciens: Difference spectroscopy with extracts of wild type and knockout mutants. FEBS letters, 580(2), pp.437-442. pdf
    20. Scheerer, P., Michael, N., Park, J.H., Noack, S., Förster, C., Hammam, M.A., Inomata, K., Choe, H.W., Lamparter, T. and Krauß, N., 2006. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Journal of structural biology,153(1), pp.97-102. pdf
    21. Inomata, K., Hammam, M.A., Kinoshita, H., Murata, Y., Khawn, H., Noack, S., Michael, N. and Lamparter, T., 2005. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr-and Pfr-like adducts. Journal of Biological Chemistry,280(26), pp.24491-24497. pdf
    22. Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K. and Inomata, K., 2003. Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. Journal of Biological Chemistry, 278(36), pp.33786-33792. pdf
    23. Lamparter, T., Michael, N., Mittmann, F. and Esteban, B., 2002. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proceedings of the National Academy of Sciences, 99(18), pp.11628-11633. pdf
    24. Zienicke, B., Molina, I., Glenz, R., Singer, P., Ehmer, D., Escobar, F.V., Hildebrandt, P., Diller, R. and Lamparter, T., 2013. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Journal of Biological Chemistry,288(44), pp.31738-31751. pdf

    Template:ShwoGuide


    AGP1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?