AGP1
- Page ID
- 5507
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Nieder, J.B., Stojković, E.A., Moffat, K., Forest, K.T., Lamparter, T., Bittl, R. and Kennis, J.T., 2013. Pigment–Protein Interactions in Phytochromes Probed by Fluorescence Line Narrowing Spectroscopy. The Journal of Physical Chemistry B, 117(48), pp.14940-14950. pdf
- Linke, M., Yang, Y., Zienicke, B., Hammam, M.A., von Haimberger, T., Zacarias, A., Inomata, K., Lamparter, T. and Heyne, K., 2013. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump–IR probe study. Biophysical journal, 105(8), pp.1756-1766. pdf
- Njimona, I. and Lamparter, T., 2011. Temperature effects on Agrobacterium phytochrome Agp1. PloS one, 6(10), p.e25977. pdf
- Zienicke, B., Chen, L.Y., Khawn, H., Hammam, M.A., Kinoshita, H., Reichert, J., Ulrich, A.S., Inomata, K. and Lamparter, T., 2011. Fluorescence of phytochrome adducts with synthetic locked chromophores. Journal of Biological Chemistry, 286(2), pp.1103-1113. pdf
- Rottwinkel, G., Oberpichler, I. and Lamparter, T., 2010. Bathy phytochromes in rhizobial soil bacteria. Journal of bacteriology, 192(19), pp.5124-5133. pdf
- Piwowarski, P., Ritter, E., Hofmann, K.P., Hildebrandt, P., von Stetten, D., Scheerer, P., Michael, N., Lamparter, T. and Bartl, F., 2010. Light‐Induced Activation of Bacterial Phytochrome Agp1 Monitored by Static and Time‐Resolved FTIR Spectroscopy. ChemPhysChem, 11(6), pp.1207-1214. pdf
- Roeben, M., Hahn, J., Klein, E., Lamparter, T., Psakis, G., Hughes, J. and Schmieder, P., 2010. NMR spectroscopic investigation of mobility and hydrogen bonding of the chromophore in the binding pocket of phytochrome proteins. ChemPhysChem, 11(6), pp.1248-1257. pdf
- Scheerer, P., Michael, N., Park, J.H., Nagano, S., Choe, H.W., Inomata, K., Borucki, B., Krauß, N. and Lamparter, T., 2010. Light‐Induced Conformational Changes of the Chromophore and the Protein in Phytochromes: Bacterial Phytochromes as Model Systems. ChemPhysChem, 11(6), pp.1090-1105. pdf
- Borucki, B. and Lamparter, T., 2009. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome. Journal of Biological Chemistry, 284(38), pp.26005-26016. pdf
- Borucki, B., Seibeck, S., Heyn, M.P. and Lamparter, T., 2009. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Biochemistry, 48(27), pp.6305-6317. pdf
- Inomata, K., Khawn, H., Chen, L.Y., Kinoshita, H., Zienicke, B., Molina, I. and Lamparter, T., 2009. Assembly of Agrobacterium Phytochromes Agp1 and Agp2 with Doubly Locked Bilin Chromophores†. Biochemistry, 48(12), pp.2817-2827. pdf
- Nieder, J.B., Brecht, M. and Bittl, R., 2008. Dynamic intracomplex heterogeneity of phytochrome. Journal of the American Chemical Society,131(1), pp.69-71. pdf
- von Stetten, D., Günther, M., Scheerer, P., Murgida, D.H., Mroginski, M.A., Krauß, N., Lamparter, T., Zhang, J., Anstrom, D.M., Vierstra, R.D. and Forest, K.T., 2008. Chromophore heterogeneity and photoconversion in phytochrome crystals and solution studied by resonance Raman spectroscopy.Angewandte Chemie International Edition, 47(25), pp.4753-4755. pdf
- Schumann, C., Groß, R., Wolf, M.M., Diller, R., Michael, N. and Lamparter, T., 2008. Subpicosecond midinfrared spectroscopy of the P fr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Biophysical journal,94(8), pp.3189-3197. pdf
- Schumann, C., Groß, R., Michael, N., Lamparter, T. and Diller, R., 2007. Sub‐Picosecond Mid‐Infrared Spectroscopy of Phytochrome Agp1 from Agrobacterium tumefaciens. ChemPhysChem, 8(11), pp.1657-1663. pdf
- von Stetten, D., Seibeck, S., Michael, N., Scheerer, P., Mroginski, M.A., Murgida, D.H., Krauss, N., Heyn, M.P., Hildebrandt, P., Borucki, B. and Lamparter, T., 2007. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation.Journal of Biological Chemistry, 282(3), pp.2116-2123. pdf
- Inomata, K., Noack, S., Hammam, M.A., Khawn, H., Kinoshita, H., Murata, Y., Michael, N., Scheerer, P., Krauss, N. and Lamparter, T., 2006. Assembly of synthetic locked chromophores with Agrobacterium phytochromes Agp1 and Agp2. Journal of Biological Chemistry, 281(38), pp.28162-28173. pdf
- Lamparter, T., 2006. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. BMC bioinformatics, 7(1), p.1. pdf
- Oberpichler, I., Molina, I., Neubauer, O. and Lamparter, T., 2006. Phytochromes from Agrobacterium tumefaciens: Difference spectroscopy with extracts of wild type and knockout mutants. FEBS letters, 580(2), pp.437-442. pdf
- Scheerer, P., Michael, N., Park, J.H., Noack, S., Förster, C., Hammam, M.A., Inomata, K., Choe, H.W., Lamparter, T. and Krauß, N., 2006. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Journal of structural biology,153(1), pp.97-102. pdf
- Inomata, K., Hammam, M.A., Kinoshita, H., Murata, Y., Khawn, H., Noack, S., Michael, N. and Lamparter, T., 2005. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr-and Pfr-like adducts. Journal of Biological Chemistry,280(26), pp.24491-24497. pdf
- Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K. and Inomata, K., 2003. Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. Journal of Biological Chemistry, 278(36), pp.33786-33792. pdf
- Lamparter, T., Michael, N., Mittmann, F. and Esteban, B., 2002. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proceedings of the National Academy of Sciences, 99(18), pp.11628-11633. pdf
- Zienicke, B., Molina, I., Glenz, R., Singer, P., Ehmer, D., Escobar, F.V., Hildebrandt, P., Diller, R. and Lamparter, T., 2013. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Journal of Biological Chemistry,288(44), pp.31738-31751. pdf