Skip to main content
Biology LibreTexts

2.S: Unit 2 Summary

  • Page ID
    108060
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In Unit 2, we learned about macroevolution, speciation, and microevolution.

    Unit 2.2

    Evolution is the biological theory that populations change over time. In addition to natural selection, evolution may take place as a result of random mutation, genetic drift, gene flow, and/or non-random mating events. The theory of evolution is a cornerstone in understanding nearly all biological processes and the adaptations of organisms to their environmental conditions.

    Fossils, along with the comparative anatomy of present-day organisms, constitute the morphological, or anatomical, record. Fossils provide solid evidence that organisms from the past are not the same as those found today; fossils show a progression of evolution. By comparing the anatomies of both modern and extinct species, paleontologists can infer the lineages of those species.

    Because natural selection acts to increase the frequency of beneficial alleles and traits while decreasing the frequency of deleterious qualities, it is adaptive evolution. Natural selection acts at the individual level, selecting for those that have a higher overall fitness compared to the rest of the population. If the fit phenotypes are those that are similar, natural selection will result in stabilizing selection, and an overall decrease in the population’s variation. Directional selection works to shift a population’s variance toward a new, fit phenotype, as environmental conditions change. In contrast, diversifying selection results in increased genetic variance by selecting for two or more distinct phenotypes. Other types of selection include frequency-dependent selection, in which individuals with either common (positive frequency-dependent selection) or rare (negative frequency-dependent selection) are selected. Finally, sexual selection results from one sex having more variability in reproductive success than the other.

    Evolution is a challenging concept and there are, therefore, some misconceptions among those that have not studied it. The theory of evolution is often challenged by incorrectly conflating the scientific meaning of a theory with the vernacular meaning. Evolution is sometimes mistakenly interpreted to mean that individuals evolve, when in fact only populations can evolve as their gene frequencies change over time. It is often spoken in goal-directed terms by which organisms change through intention, and selection operates on mutations present in a population that have not arisen in response to a particular environmental stress. Evolution is often characterized as being controversial among scientists; however, it is accepted by the vast majority of working scientists.

    Unit 2.3

    Speciation occurs along two main pathways: geographic separation (allopatric speciation) and through mechanisms that occur within a shared habitat (sympatric speciation). Both pathways isolate a population reproductively in some form. Mechanisms of reproductive isolation act as barriers between closely related species, enabling them to diverge and exist as genetically independent species. Prezygotic barriers block reproduction prior to formation of a zygote; whereas, postzygotic barriers block reproduction after fertilization occurs. For a new species to develop, something must introduce a reproductive barrier. Sympatric speciation can occur through errors in meiosis that form gametes with extra chromosomes (polyploidy). Autopolyploidy occurs within a single species; whereas, allopolyploidy occurs between closely related species.

    Speciation is not a precise division: overlap between closely related species can occur in areas called hybrid zones. Organisms reproduce with other similar organisms. The fitness of these hybrid offspring can affect the two species' evolutionary path. Scientists propose two models for the rate of speciation: one model illustrates how a species can change slowly over time. The other model demonstrates how change can occur quickly from a parent generation to a new species. Both models continue to follow natural selection patterns.

    Unit 2.4

    The modern synthesis of evolutionary theory grew out of the cohesion of Darwin’s, Wallace’s, and Mendel’s thoughts on evolution and heredity, along with the more modern study of population genetics. It describes the evolution of populations and species, from small-scale changes among individuals to large-scale changes over paleontological time periods. To understand how organisms evolve, scientists can track populations’ allele frequencies over time. If they differ from generation to generation, scientists can conclude that the population is not in Hardy-Weinberg equilibrium, and is thus evolving.

    Both genetic and environmental factors can cause phenotypic variation in a population. Different alleles can confer different phenotypes, and different environments can also cause individuals to look or act differently. Only those differences encoded in an individual’s genes, however, can pass to its offspring and, thus, be a target of natural selection. Natural selection works by selecting for alleles that confer beneficial traits or behaviors, while selecting against those for deleterious qualities. Genetic drift stems from the chance occurrence that some individuals in the gene line have more offspring than others. When individuals leave or join the population, allele frequencies can change as a result of gene flow. Mutations to an individual’s DNA may introduce new variation into a population. Allele frequencies can also alter when individuals do not randomly mate with others in the group.

    In Unit 3, we will be expanding on the ideas above and considering the diversity of life, how science classifies and differentiates organisms, as well as the history of life on Earth.

    Cover photo: "Summary" (Nick Youngson, CC BY-SA 3.0)


    This page titled 2.S: Unit 2 Summary is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tara Jo Holmberg.

    • Was this article helpful?