Skip to main content
Biology LibreTexts

9.5.1: Cost and Prevention of Resistance

  • Page ID
    50649
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Examine the causes and effects of multidrug-resistant organisms on healthcare

    Prevention and control of microbial-resistant organisms is one of the most complex management issues that health care professionals face. The clinical and financial burden to patients and health care providers is staggering. Patients who are infected with bacterial strains resistant to more than one type or class of drugs (multidrug-resistant organisms, MDRO) often have an increased risk of prolonged illness, extended hospital stay, and mortality.

    The cost of care for these patients can be more than double compared to those without an MDRO infection. The alternative medication they are prescribed to overcome the infection is often substantially more costly. Multidrug resistance forces healthcare providers to use antibiotics that are more expensive or more toxic to the patient.

    image
    Figure: Antibiotics: Antibiotic misuse is a major cause of the staggering healthcare costs for the treatment of resistant bacterial strains.

    When no antibiotic is effective, healthcare providers may be limited to providing supportive care rather than directly treating an infection. In a 2008 study of attributable medical costs for antibiotic resistant infections, it was estimated that infections in 188 patients from a single healthcare institution cost between $13.35 and $18.75 million dollars.

    Research and development of new drugs effective against resistant bacterial strains also comes at a cost. To prevent antimicrobial resistance, the patient and the healthcare provider should discuss the appropriate medicine for the illness. Patients should follow prescription directions and should not share or take medicine that was prescribed for someone else; these virtues should be strictly practiced. Healthy lifestyle habits, including proper diet, exercise, and sleeping patterns, as well as good hygiene such as frequent hand washing, can help prevent illness. These practices, therefore, also help prevent the overuse or misuse of antibiotics and the emergence of problematic resistant strains.

    There are also several actions that can be taken by the medical community to help prevent the development and spread of antibiotic resistance:

    • Prevent infections whenever possible through vaccination and other appropriate protective measures.
    • Prescribe narrow-spectrum as opposed to broad-spectrum antibiotics whenever possible.  In this way, fewer groups of bacteria will be exposed to selective pressure that will result in resistance.
    • Keep certain drugs as "drugs of last resort" to be used in only the most desperate cases to reduce the exposure of microbes to these drugs.
    • Only prescribe antimicrobial drugs when they are truly necessary.  Avoid prescribing antibiotics for viral infections or minor infections that can self-resolve and try other treatments in place of antimicrobial drugs if they are available.
    • Use drugs in combinations.  Although a pathogen might develop resistance to one drug, the other drug(s) in the combination will still be able to control it.  This is a common strategy for treatment of HIV and tuberculosis.
    • In cases where treatment compliance is an issue, directly observed therapy (DOT) is sometimes used. This involves health workers administering the prescribed drugs and confirming they are taken properly.  DOT has been most widely applied for treatment of tuberculosis due to its long treatment period and generally lower compliance in treatment.
    • Select antibiotics that are less likely to lead to resistance, such as those shown to be difficult to develop resistance to and those which do not persist in the environment.

    Other industries also contribute to and can play a role in preventing antibiotic resistance.  Agriculture and aquaculture use large amounts of antibiotics which are released into the environment and can lead to development of antibiotic resistance.  There is no barrier between human pathogens and environmental bacteria, making non-pathogenic environmental bacteria a potential reservoir of antibiotic resistance.  For instance, it is thought that vancomycin resistant Enterococcus first appeared as a result of the use of vancomycin-like antibiotics used in cattle.  Recent governmental regulations have attempted to reduce this risk by restricting antibiotics in agriculture to therapetuic use.

    Key Points

    • Antimicrobial resistance to available drugs requires the development of new drugs to effectively treat resistant strains and reduce mortality from bacterial infections.
    • Antimicrobial resistance can be prevented by practicing good hygiene, and being responsible with antibiotic use.
    • Treating antibiotic-resistant bacterial strains is expensive for both the patient and the healthcare provider. The treatment requires extended hospital stay and costly medications.

    Key Terms

    • multidrug resistance: A condition enabling a disease-causing organism to resist distinct drugs or chemicals of a wide variety of structure and function targeted at eradicating the organism.

    9.5.1: Cost and Prevention of Resistance is shared under a CC BY-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?