Skip to main content
Biology LibreTexts

6.1: Life History Theory and Natual Selection

  • Page ID
    104540

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Natural Selection and Evolutionary Tradeoffs

    All living things need energy and nutrients to grow, maintain their bodies, and reproduce. In nature, these resources are in limited supply, and there is often competition for access to them (e.g., to sunlight and minerals for plants or food sources for animals). Thus, each organism will have non-infinite resources to divide among activities like growth, body maintenance, and reproduction..

    What does it mean for an organism to allocate its limited resources "well" in this context? From an evolutionary standpoint, it means that the resources are distributed among the potential activities (growth, maintenance, reproduction) in a way that maximizes fitness, or the number of offspring the organism leaves in the next generation. Organisms with inherited traits that cause them to distribute their resources in a more effective way will tend to leave more offspring than organisms lacking these traits, causing the traits to increase in the population over generations by natural selection.

    Over very long periods of time, this process results in species with life history strategies, or collections of life history traits (number of offspring, timing of reproduction, amount of parental care, etc.), that are well-adapted for their role and environment. The optimal life history strategy may be different for each species, depending on its traits, environment, and other constraints.

    Video: Watch as Stephen Sterns discusses Life Hisotry Theory

    Life History Theory attempts to explain how organisms are designed by natural selection for reproductive success in the face of the many ecological and social problems they encounter. Prof. Stearns specializes in life history evolution, which links the fields of ecology and evolutionary biology, and in evolutionary medicine.

    Life History Theory

    Life history theory is a general framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan (length of time alive)—have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

    The theory was developed in the 1950s and is used to answer questions about topics such as organism size, age of maturation, number of offspring, life span, and many others. In order to study these topics, life history strategies must be identified, and then models are constructed to study their effects. Finally, predictions about the importance and role of the strategies are made, and these predictions are used to understand how evolution affects the ordering and length of life history events in an organism's life, particularly the lifespan and period of reproduction. Life history theory draws on an evolutionary foundation, and studies the effects of natural selection on organisms, both throughout their lifetime and across generations. It also uses measures of evolutionary fitness to determine if organisms are able to maximize or optimize this fitness, by allocating resources to a range of different demands throughout the organism's life. It serves as a method to investigate further the "many layers of complexity of organisms and their worlds".

    Organisms have evolved a great variety of life histories, from Pacific salmon (Figure \(\PageIndex{1}\)), which produce thousands of eggs at one time and then die, to human beings, who produce a few offspring over the course of decades. The theory depends on principles of evolutionary biology and ecology and is widely used in other areas of science.

    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Wild Pacific salmon swim up river to spawn in Oregon. Image: Pixabay. (CC BY 2.0; author Bureau of Land Management)

    Life cycle

    All organisms follow a specific sequence in their development, beginning with gestation and ending with death, which is known as the life cycle. Events in between usually include birth, childhood, maturation, reproduction, and senescence, and together these comprise the life history strategy of that organism. The major events in this life cycle are usually shaped by the demographic qualities of the organism. Some are more obvious shifts than others, and may be marked by physical changes—for example, teeth erupting in young children. Some events may have little variation between individuals in a species, such as length of gestation, but other events may show a lot of variation between individuals, such as age at first reproduction. Life cycles can be divided into two major stages: growth and reproduction. These two cannot take place at the same time, so once reproduction has begun, growth usually ends. This shift is important because it can also affect other aspects of an organism's life, such as the organization of its group or its social interactions.

    Each species has its own pattern and timing for these events, often known as its ontogeny, and the variety produced by this is what life history theory addresses. Evolution then works upon these stages to ensure that an organism adapts to its environment. For example, a human, between being born and reaching adulthood, will pass through an assortment of life stages, which include: birth, infancy, weaning, childhood and growth, adolescence, sexual maturation, and reproduction. All of these are defined in a specific biological way, which is not necessarily the same as the way that they are commonly used. In life history theory, evolution works on the life stages of particular species (e.g., length of juvenile period) but is also discussed for a single organism's functional, lifetime adaptation. In both cases, researchers assume adaptation—processes that establish fitness.

    Traits

    There are at least six traits that are traditionally recognized as important in life history theory. The trait that is seen as the most important for any given organism is the one where a change in that trait creates the most significant difference in that organism's level of fitness. In this sense, an organism's fitness is determined by its changing life history traits. The way in which evolutionary forces act on these life history traits serves to limit the genetic variability and heritability of the life history strategies, although there are still large varieties that exist in the world.

    Commonly studied life history traits:

    1. age and size at reproductive maturity
    2. number and size of offspring
    3. number of reproductive events
    4. reproductive investments (such as parental care)
    5. age- and size-specific mortality schedules
    6. lifespan

    Tradeoffs in Life History Traits

    Parental Care and Fecundity

    Fecundity is the potential reproductive capacity of an individual within a population. In other words, fecundity describes how many offspring could ideally be produced if an individual has as many offspring as possible, repeating the reproductive cycle as soon as possible after the birth of the offspring. In animals, fecundity is inversely related to the amount of parental care given to an individual offspring. Species, such as many marine invertebrates, that produce many offspring usually provide little if any care for the offspring (they would not have the energy or the ability to do so anyway). Most of their energy budget is used to produce many tiny offspring. Animals with this strategy are often self-sufficient at a very early age. This is because of the energy tradeoff these organisms have made to maximize their evolutionary fitness. Because their energy is used for producing offspring instead of parental care, it makes sense that these offspring have some ability to be able to move within their environment and find food and perhaps shelter. Even with these abilities, their small size makes them extremely vulnerable to predation, so the production of many offspring allows enough of them to survive to maintain the species.

    Animal species that have few offspring during a reproductive event usually give extensive parental care, devoting much of their energy budget to these activities, sometimes at the expense of their own health. This is the case with many mammals, such as humans, kangaroos, and pandas. The offspring of these species are relatively helpless at birth and need to develop before they achieve self-sufficiency.

    Plants with low fecundity produce few energy-rich seeds (such as coconuts and chestnuts) with each having a good chance to germinate into a new organism; plants with high fecundity usually have many small, energy-poor seeds (like orchids) that have a relatively poor chance of surviving. Although it may seem that coconuts and chestnuts have a better chance of surviving, the energy tradeoff of the orchid is also very effective. It is a matter of where the energy is used, for large numbers of seeds or for fewer seeds with more energy.

    Early versus Late Reproduction

    The timing of reproduction in a life history also affects species survival. Organisms that reproduce at an early age have a greater chance of producing offspring, but this is usually at the expense of their growth and the maintenance of their health. Conversely, organisms that start reproducing later in life often have greater fecundity or are better able to provide parental care, but they risk that they will not survive to reproductive age. Examples of this can be seen in fishes. Small fish like guppies use their energy to reproduce rapidly, but never attain the size that would give them defense against some predators. Larger fish, like the bluegill or shark, use their energy to attain a large size, but do so with the risk that they will die before they can reproduce or at least reproduce to their maximum. These different energy strategies and tradeoffs are key to understanding the evolution of each species as it maximizes its fitness and fills its niche. In terms of energy budgeting, some species “blow it all” and use up most of their energy reserves to reproduce early before they die. Other species delay having reproduction to become stronger, more experienced individuals and to make sure that they are strong enough to provide parental care if necessary.

    Single versus Multiple Reproductive Events

    Some life history traits, such as fecundity, timing of reproduction, and parental care, can be grouped together into general strategies that are used by multiple species. Semelparity occurs when a species reproduces only once during its lifetime and then dies. Such species use most of their resource budget during a single reproductive event, sacrificing their health to the point that they do not survive. Examples of semelparity are bamboo, which flowers once and then dies, and the Chinook salmon (Figure \(\PageIndex{1}\)), which uses most of its energy reserves to migrate from the ocean to its freshwater nesting area, where it reproduces and then dies. Scientists have posited alternate explanations for the evolutionary advantage of the Chinook’s post-reproduction death: a programmed suicide caused by a massive release of corticosteroid hormones, presumably so the parents can become food for the offspring, or simple exhaustion caused by the energy demands of reproduction; these are still being debated.

    Iteroparity describes species that reproduce repeatedly during their lives. Some animals are able to mate only once per year, but survive multiple mating seasons. The pronghorn antelope is an example of an animal that goes into a seasonal estrus cycle (“heat”): a hormonally induced physiological condition preparing the body for successful mating (Figure \(\PageIndex{2}\)). Females of these species mate only during the estrus phase of the cycle. A different pattern is observed in primates, including humans and chimpanzees, which may attempt reproduction at any time during their reproductive years, even though their menstrual cycles make pregnancy likely only a few days per month during ovulation (Figure \(\PageIndex{3}\)).

    pronghorn antelope
    Figure \(\PageIndex{2}\): he (b) pronghorn antelope mates during specific times of the year during its reproductive life (CC BY OpenStax).
    mother chimpanzee with her offspring
    Figure \(\PageIndex{3}\): himpanzees, may mate on any day, independent of ovulation (CC BY OpenStax)

    Attribution:

    This article is a modified derivative of:


    This page titled 6.1: Life History Theory and Natual Selection is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Sara Kappus (Open Educational Resource Initiative at Evergreen Valley College) .

    • Was this article helpful?