Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

9.10: References

( \newcommand{\kernel}{\mathrm{null}\,}\)

Arndt, S., Jørgensen, B., LaRowe, D.E., Middelburg, J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Sci. Rev. 123, 53–86. https://doi.org/10.1016/j.earscirev.2013.02.008

Banfield, J.F., Welch, S.A., 2000. Microbial controls on the mineralogy of the environment, in: Vaughan, D.J., Wogelius, R.A. (Eds.), Environmental Microbiology. Eotvos University Press, Budapest.

Bernhardt, E.S., Savoy, P., Vlah, M.J., Appling, A.P., Koenig, L.E., Hall, R.O., Arroita, M., Blaszczak, J.R., Carter, A.M., Cohen, M., Harvey, J.W., Heffernan, J.B., Helton, A.M., Hosen, J.D., Kirk, L., McDowell, W.H., Stanley, E.H., Yackulic, C.B., Grimm, N.B., 2022. Light and flow regimes regulate the metabolism of rivers. Proc. Natl. Acad. Sci. 119, e2121976119. https://doi.org/10.1073/pnas.2121976119

Bethke, C.M., Ding, D., Jin, Q., Sanford, R.A., 2008. Origin of microbiological zoning in groundwater flows. Geology 36, 739–742.

Bethke, C.M., Sanford, R.A., Kirk, M.F., Jin, Q., Flynn, T.M., 2011. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210. https://doi.org/10.2475/03.2011.01

Button, D.K., 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49, 270– 297. https://doi.org/10.1128/mmbr.49.3.270-297.1985

Craine, J.M., Fierer, N., McLauchlan, K.K., 2010. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857. https://doi.org/10.1038/ngeo1009

Garrett, R.H., Grisham, C.M., 1999. Biochemistry, 2nd ed. Saunders College Publishing, New York. Jin, Q., Bethke, C.M., 2007. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677.

Jin, Q., Bethke, C.M., 2005. Predicting the rate of microbial respiration in geochemical environments. Geochim. Cosmochim. Acta 69, 1133–1143.

Jin, Q., Bethke, C.M., 2003. A new rate law describing microbial respiration. Appl. Environ. Microbiol. 69, 2340–2348.

Jin, Q., Bethke, C.M., 2002. Kinetics of electron transfer through the respiratory chain. Biophys. J. 83, 1797–1808.

Jin, Q., Roden, E.E., 2011. Microbial physiology-based model of ethanol metabolism in subsurface sediments. J. Contam. Hydrol. 125, 1–12. https://doi.org/10.1016/j.jconhyd.2011.04.002

Kirk, M.F., Santillan, E.F.U., Sanford, R.A., Altman, S.J., 2013. CO2-induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors. Geochim. Cosmochim. Acta 122, 198–208. https://doi.org/10.1016/j.gca.2013.08.018

Lovley, D.R., Klug, M.J., 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 50, 11–18.

Monod, J., 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103

Novelli, P.C., Michelson, A.R., Scranton, M.I., Banta, G.T., Hobbie, J.E., Howarth, R.W., 1988. Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Mass. Geochim. Cosmochim. Acta 52, 2477–2486. https://doi.org/10.1016/0016-7037(88)90306-7

Postma, D., Jakobsen, R., 1996. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175.

Roden, E.E., 2006. Geochemical and microbiological controls on dissimilatory iron reduction. Comptes Rendus Geosci. 338, 456–467. https://doi.org/10.1016/j.crte.2006.04.009

Roden, E.E., 2003. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ. Sci. Technol. 37, 1319–1324. https://doi.org/10.1021/es026038o

Roden, E.E., Zachara, J.M., 1996. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 1618–1628. https://doi.org/10.1021/es9506216

Tarpgaard, I.H., Jorgensen, B.B., Kjeldsen, K.U., Roy, H., 2017. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent halfsaturation constants for dissimilatory sulfate reduction. Fems Microbiol. Ecol. 93. https://doi.org/10.1093/femsec/fix012

Westrich, J.T., Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236–249. https://doi.org/10.4319/lo.1984.29.2.0236


This page titled 9.10: References is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew F Kirk via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?