Skip to main content
Biology LibreTexts

5.6: References

  • Page ID
    131835
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Anantharaman, K., Hausmann, B., Jungbluth, S.P., Kantor, R.S., Lavy, A., Warren, L.A., Rappe, M.S., Pester, M., Loy, A., Thomas, B.C., Banfield, J.F., 2018. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J 12, 1715–1728. https://doi.org/10.1038/s41396-018-0078-0

    Anderson, L. Davis, Kent, D.B., Davis, J.A., 1994. Batch experiments characterizing the reduction of chromium(VI) using suboxic material from a mildly reducing sand and gravel aquifer. Environ. Sci. Technol. 28, 178–185. https://doi.org/10.1021/es00050a025

    Andrews, S.C., 1998. Iron Storage in Bacteria, in: Poole, R.K. (Ed.), Advances in Microbial Physiology. Academic Press, pp. 281–351. https://doi.org/10.1016/S0065-2911(08)60134-4

    Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., Rey-Sanchez, C., Daly, R.A., Mirfenderesgi, G., Hoyt, D.W., Riley, W.J., Miller, C.S., Bohrer, G., Wrighton, K.C., 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications 8, 1567. https://doi.org/10.1038/s41467-017-01753-4

    Arndt, S., Jørgensen, B., LaRowe, D.E., Middelburg, J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 123, 53–86. https://doi.org/10.1016/j.earscirev.2013.02.008

    Bak, F., Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326, 891–892. https://doi.org/10.1038/326891a0

    Balch, W.E., Wolfe, R.S., 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32, 781–791. https://doi.org/10.1128/aem.32.6.781-791.1976

    Barton, L., Fardeau, M.-L., Fauque, G., 2014. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. Metal ions in life sciences 14, 237–77. https://doi.org/10.1007/978-94-017-9269-1_10

    Benner, S.G., Hansel, C.M., Wielinga, B.W., Barber, T.M., Fendorf, S., 2002. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 36, 1705–1711.

    Benning, L.G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways in the Fe-S system below 100 degrees C. Chem. Geol. 167, 25–51.

    Berg, J.M., Tymoczko, J.L., Stryer, L., 2002. Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia, in: Biochemistry.

    Berner, R.A., 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326. https://doi.org/10.1038/nature02131

    Berner, R.A., 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51, 359–365. https://doi.org/10.1306/212F7C7F-2B24-11D7-8648000102C1865D

    Berner, R.A., 1970. Sedimentary pyrite formation. Am. J. Sci. 268, 1–23.

    Bijay-Singh, Craswell, E., 2021. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences 3, 518. https://doi.org/10.1007/s42452-021-04521-8

    Bird, L.J., Bonnefoy, V., Newman, D.K., 2011. Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology 19, 330–340. https://doi.org/10.1016/j.tim.2011.05.001

    Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626. https://doi.org/10.1038/35036572

    Bonneville, S., Behrends, T., Van Cappellen, P., 2009. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship. Geochimica et Cosmochimica Acta 73, 5273–5282. https://doi.org/10.1016/j.gca.2009.06.006

    Bonneville, S., Van Cappellen, P., Behrends, T., 2004. Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chemical Geology 212, 255–268. https://doi.org/10.1016/j.chemgeo.2004.08.015

    Borrel, G., O’Toole, P.W., Harris, H.M.B., Peyret, P., Brugere, J.-F., Gribaldo, S., 2013. Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis. Genome Biology and Evolution 5, 1769–1780. https://doi.org/10.1093/gbe/evt128

    Brosnan, J.T., Brosnan, M.E., 2006. The sulfur-containing amino acids: an overview. J Nutr 136, 1636S–1640S. https://doi.org/10.1093/jn/136.6.1636S

    Bryce, C., Blackwell, N., Schmidt, C., Otte, J., Huang, Y.-M., Kleindienst, S., Tomaszewski, E., Schad, M., Warter, V., Peng, C., Byrne, J.M., Kappler, A., 2018. Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environmental Microbiology 20, 3462–3483. https://doi.org/10.1111/1462-2920.14328

    Bu, C., Wang, Y., Ge, C., Ahmad, H.A., Gao, B., Ni, S.-Q., 2017. Dissimilatory Nitrate Reduction to Ammonium in the Yellow River Estuary: Rates, Abundance, and Community Diversity. Scientific Reports 7, 6830. https://doi.org/10.1038/s41598-017-06404-8

    Burdige, D.J., 2007. Preservation of Organic Matter in Marine Sediments:  Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chem. Rev. 107, 467–485. https://doi.org/10.1021/cr050347q

    Burgin, A.J., Hamilton, S.K., 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5, 89–96. https://doi.org/10.1890/1540-9295(2007)5[89:hwotro]2.0.co;2

    Canfield, D.E., 1989. Reactive iron in marine-sediments. Geochim. Cosmochim. Acta 53, 619–632.

    Canfield, D.E., Thamdrup, B., 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology 7, 385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x

    Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202.

    Cosmidis, J., Benzerara, 2022. Why do microbes make minerals? Comptes Rendus. Géoscience 354, 1–39. https://doi.org/10.5802/crgeos.107

    Costa, K.C., Leigh, J.A., 2014. Metabolic versatility in methanogens. Curr. Opin. Biotech. 29, 70–75. https://doi.org/10.1016/j.copbio.2014.02.012

    Cutting, R.S., Coker, V.S., Fellowes, J.W., Lloyd, J.R., Vaughan, D.J., 2009. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta 73, 4004–4022. https://doi.org/10.1016/j.gca.2009.04.009

    Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdrup, B., Acuña-González, J., 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608. https://doi.org/10.1038/nature01526

    De Leeuw, J.W., Largeau, C., 1993. A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal, and Petroleum Formation, in: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications. Springer US, Boston, MA, pp. 23–72. https://doi.org/10.1007/978-1-4615-2890-6_2

    Devereux, R., He, S.H., Doyle, C.L., Orkland, S., Stahl, D.A., LeGall, J., Whitman, W.B., 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. Journal of Bacteriology 172, 3609–3619. https://doi.org/10.1128/jb.172.7.3609-3619.1990

    Dong, H.L., Jaisi, D.P., Kim, J., Zhang, G.X., 2009. Microbe-clay mineral interactions. Am. Miner. 94, 1505–1519. https://doi.org/10.2138/am.2009.3246

    Ehrlich, H.L., Fox, S.I., 1967. Copper sulfide precipitation by yeasts from Acid mine-waters. Appl Microbiol 15, 135–139. https://doi.org/10.1128/am.15.1.135-139.1967

    Ehrlich, H.L., Newman, D.K., 2009. Geomicrobiology, 5th ed. CRC Press.

    Eldor, P., 2015. Soil microbiology, ecology and biochemistry, 4th ed. Academic Press, London, England.

    Emerson, D., 2012. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem Soc Trans 40, 1211–1216. https://doi.org/10.1042/BST20120154

    Emerson, D., Fleming, E.J., McBeth, J.M., 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64, 561–583. https://doi.org/10.1146/annurev.micro.112408.134208

    Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., Kartal, B., 2016. Archaea catalyze irondependent anaerobic oxidation of methane. Proc. Nat. Acad. Sci. 113, 12792–12796.

    Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W., 2000. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290, 291–296. https://doi.org/10.1126/science.290.5490.291

    Ferousi, C., Lindhoud, S., Baymann, F., Kartal, B., Jetten, M.S., Reimann, J., 2017. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology 37, 129–136. https://doi.org/10.1016/j.cbpa.2017.03.009

    Ferry, J.G., 2010. How to Make a Living by Exhaling Methane, in: Gottesman, S., Harwood, C.S. (Eds.), Annual Review of Microbiology. Annual Reviews, Palo Alto, pp. 453–473. https://doi.org/10.1146/annurev.micro.112408.134051

    Finster, K., 2008. Microbiological disproportionation of inorganic sulfur compounds. Journal of Sulfur Chemistry 29, 281–292. https://doi.org/10.1080/17415990802105770

    Flynn, T.M., O’Loughlin, E.J., Mishra, B., DiChristina, T.J., Kemner, K.M., 2014. Sulfur-mediated electron shuttling during bacterial iron reduction. Science 344, 1039–1042. https://doi.org/10.1126/science.1252066

    Gaby, J., Buckley, D., 2015. Assessment of Nitrogenase Diversity in the Environment, in: Biological Nitrogen Fixation. pp. 209–216. https://doi.org/10.1002/9781119053095.ch20

    Gralnick, J.A., Newman, D.K., 2007. Extracellular respiration. Mol. Microbiol. 65, 1–11. https://doi.org/10.1111/j.1365-2958.2007.05778.x

    Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296. https://doi.org/10.1038/nature06592

    Guerrero-Cruz, S., Vaksmaa, A., Horn, M.A., Niemann, H., Pijuan, M., Ho, A., 2021. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Frontiers in Microbiology 12, 1057. https://doi.org/10.3389/fmicb.2021.678057

    Hardison, A.K., Algar, C.K., Giblin, A.E., Rich, J.J., 2015. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N-2 production. Geochimica Et Cosmochimica Acta 164, 146–160. https://doi.org/10.1016/j.gca.2015.04.049

    Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570. https://doi.org/10.1038/nature12375

    Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81–115. https://doi.org/10.1016/0304-4203(95)00008-F

    Hedges, J.I., Keil, R.G., Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27, 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1

    Holmes, D.E., Bond, D.R., Lovley, D.R., 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234–1237. https://doi.org/10.1128/aem.70.2.1234-1237.2004

    Hori, T., Aoyagi, T., Itoh, H., Narihiro, T., Oikawa, A., Suzuki, K., Ogata, A., Friedrich, M.W., Conrad, R., Kamagata, Y., 2015. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front. Microbiol. 6. https://doi.org/10.3389/fmicb.2015.00386

    Jetten, M., Op den Camp, H., Kuenen, J.G., Strous, M., 2010. Description of the order brocadiales. Mitochondrion.

    Jetten, M.S.M., 2008. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909. https://doi.org/10.1111/j.1462-2920.2008.01786.x

    Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., Zhang, H., 2015. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering 20, 643–651. https://doi.org/10.1007/s12257-015-0009-0

    Jin, Q., Kirk, M.F., 2016. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01696

    Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed - the role of sulfate reduction. Nature 296, 643–645. https://doi.org/10.1038/296643a0

    Kamp, A., Høgslund, S., Risgaard-Petersen, N., Stief, P., 2015. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes. Frontiers in Microbiology 6, 1492. https://doi.org/10.3389/fmicb.2015.01492

    Kandasamy, S., Nagender Nath, B., 2016. Perspectives on the Terrestrial Organic Matter Transport and Burial along the Land-Deep Sea Continuum: Caveats in Our Understanding of Biogeochemical Processes and Future Needs. Frontiers in Marine Science 3, 259. https://doi.org/10.3389/fmars.2016.00259

    Kartal, B., Keltjens, J.T., 2016. Anammox Biochemistry: a Tale of Heme c Proteins. Trends in Biochemical Sciences 41, 998–1011. https://doi.org/10.1016/j.tibs.2016.08.015

    Kirk, M.F., Jin, Q., Haller, B.R., 2016. Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction. Groundwater 54, 406–413. https://doi.org/10.1111/gwat.12364

    Kirk, M.F., Santillan, E.F.U., Sanford, R.A., Altman, S.J., 2013. CO2-induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors. Geochim. Cosmochim. Acta 122, 198–208. https://doi.org/10.1016/j.gca.2013.08.018

    Klueglein Nicole, Zeitvogel Fabian, Stierhof York-Dieter, Floetenmeyer Matthias, Konhauser Kurt O., Kappler Andreas, Obst Martin, 2014. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria. Applied and Environmental Microbiology 80, 1051–1061. https://doi.org/10.1128/AEM.03277-13

    Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell Publishing, Malden, MA. Konhauser, K.O., Kappler, A., Roden, E.E., 2011. Iron in microbial metabolisms. Elements 7, 89–93. https://doi.org/10.2113/gselements.7.2.89

    Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546. https://doi.org/10.1038/nature03911

    Kraft, B., Tegetmeyer, H.E., Sharma, R., Klotz, M.G., Ferdelman, T.G., Hettich, R.L., Geelhoed, J.S., Strous, M., 2014. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676. https://doi.org/10.1126/science.1254070

    Kuenen, J.G., 2020. Anammox and beyond. Environmental Microbiology 22, 525–536. https://doi.org/10.1111/1462-2920.14904

    Kumar, S., Herrmann, M., Thamdrup, B., Schwab, V.F., Geesink, P., Trumbore, S.E., Totsche, K.-U., Küsel, K., 2017. Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes. Frontiers in Microbiology 8, 1951. https://doi.org/10.3389/fmicb.2017.01951

    Kurth, J.M., Nobu, M.K., Tamaki, H., de Jonge, N., Berger, S., Jetten, M.S.M., Yamamoto, K., Mayumi, D., Sakata, S., Bai, L., Cheng, L., Nielsen, J.L., Kamagata, Y., Wagner, T., Welte, C.U., 2021. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. The ISME Journal. https://doi.org/10.1038/s41396-021-01025-6

    Kuypers, M.M. M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann R., Jørgensen, B.B., Jetten M.S.M., 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences 102, 6478–6483. https://doi.org/10.1073/pnas.0502088102

    Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9

    Langmuir, D., 1997. Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River.

    Larsen, O., Postma, D., 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica Et Cosmochimica Acta 65, 1367–1379. https://doi.org/10.1016/S0016-7037(00)00623-2

    Lentini, C.J., Wankel, S.D., Hansel, C.M., 2012. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol. 3. https://doi.org/10.3389/fmicb.2012.00404

    Li, X., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J., Katayama, Y., 2010. Oxidation of Elemental Sulfur by Fusarium solani Strain THIF01 Harboring Endobacterium Bradyrhizobium sp. MICROBIAL ECOLOGY 60, 96–104. https://doi.org/10.1007/s00248-010-9699-1

    Lindberg, R.D., Runnells, D.D., 1984. Groundwater redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225, 925–927. https://doi.org/10.1126/science.225.4665.925

    Lovley, D.R., Coates, J.D., BluntHarris, E.L., Phillips, E.J.P., Woodward, J.C., 1996. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448. https://doi.org/10.1038/382445a0

    Lovley, D.R., Holmes, D.E., 2021. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-021-00597-6

    Lovley, D.R., Phillips, E.J.P., Lonergan, D.J., Widman, P.K., 1995. Fe(III) AND S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61, 2132–2138.

    Lovley, D.R., Roden, E.E., Phillips, E.J.P., Woodward, J.C., 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113, 41–53. https://doi.org/10.1016/0025-3227(93)90148-o

    Marquart, K.A., Haller, B.R., Paper, J.M., Flynn, T.M., Boyanov, M.I., Shodunke, G., Gura, C., Jin, Q., Kirk, M.F., 2019. Influence of pH on the balance between methanogenesis and iron reduction. Geobiology 17, 185–198. https://doi.org/10.1111/gbi.12320

    Martens, C.S., Berner, R.A., 1974. Methane production in interstitial waters of sulfate-depleted marine sediments. Science 185, 1167–1169. https://doi.org/10.1126/science.185.4157.1167

    McDermott, J.M., Seewald, J.S., German, C.R., Sylva, S.P., 2015. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl. Acad. Sci. U.S.A. 112, 7668–7672. https://doi.org/10.1073/pnas.1506295112

    Müller, H., Marozava, S., Probst, A.J., Meckenstock, R.U., 2020. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME Journal 14, 623–634. https://doi.org/10.1038/s41396- 019-0554-1

    Müller, V., 2003. Energy Conservation in Acetogenic Bacteria. Appl. Environ. Microbiol. 69, 6345. https://doi.org/10.1128/AEM.69.11.6345-6353.2003

    Muyzer, G., Stams, A.J.M., 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology 6, 441–454. https://doi.org/10.1038/nrmicro1892

    Oremland, R.S., Polcin, S., 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Env. Microbiol. 44, 1270–1276.

    Pan, H., Yuan, D., Liu, W., Pi, Y., Wang, S., Zhu, G., 2020. Biogeographical distribution of dissimilatory nitrate reduction to ammonium (DNRA) bacteria in wetland ecosystems around the world. Journal of Soils and Sediments 20, 3769–3778. https://doi.org/10.1007/s11368-020-02707-y

    Pang, Y., Wang, J., 2021. Various electron donors for biological nitrate removal: A review. Science of The Total Environment 794, 148699. https://doi.org/10.1016/j.scitotenv.2021.148699

    Paper, J.M., Flynn, T.M., Boyanov, M.I., Kemner, K.M., Haller, B.R., Crank, K., Lower, A., Jin, Q., Kirk, M.F., 2021. Influences of pH and substrate supply on the ratio of iron to sulfate reduction. Geobiology 19. https://doi.org/10.1111/gbi.12444

    Piepenbrock, A., Schröder, C., Kappler, A., 2014. Electron Transfer from Humic Substances to Biogenic and Abiogenic Fe(III) Oxyhydroxide Minerals. Environ. Sci. Technol. 48, 1656–1664. https://doi.org/10.1021/es404497h

    Postma, D., Jakobsen, R., 1996. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175.

    Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.P., Wagner, M., 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000

    Pyzik, A., Sommer, S., 1981. Sedimentary iron monosulfides: Kinetics and mechanisms of formation. Geochim. Cosmochim. Acta 45, 687–698. https://doi.org/10.1016/0016-7037(81)90042-9

    Ragsdale, S.W., Pierce, E., 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim. Biophys. Acta 1784, 1873–1898. https://doi.org/10.1016/j.bbapap.2008.08.012

    Reeves, E.P., Fiebig, J., 2020. Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere. Elements 16, 25–31. https://doi.org/10.2138/gselements.16.1.25

    Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Wat. Res. 42, 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020

    Roden, E.E., 2006. Geochemical and microbiological controls on dissimilatory iron reduction. C. R. Geosci. 338, 456–467. https://doi.org/10.1016/j.crte.2006.04.009

    Roden, E.E., 2003. Fe(III) oxide reactivity toward biological versus chemical reduction. Environmental Science & Technology 37, 1319–1324. https://doi.org/10.1021/es026038o

    Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., Xu, H.F., 2010. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421. https://doi.org/10.1038/ngeo870

    Roden, E.E., Urrutia, M.M., 1999. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 1847–1853.

    Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R., 2014a. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605. https://doi.org/10.1128/aem.00895-14

    Rotaru, A.E., Shrestha, P.M., Liu, F.H., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., Lovley, D.R., 2014b. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415. https://doi.org/10.1039/c3ee42189a

    Rütting, T., Boeckx, P., Müller, C., Klemedtsson, L., 2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791. https://doi.org/10.5194/bg-8-1779-2011

    Sandfeld, T., Marzocchi, U., Petro, C., Schramm, A., Risgaard-Petersen, N., 2020. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. https://doi.org/10.1038/s41396-020-0607-5

    Schink, B., Friedrich, M., 1994. Energetics of syntrophic fatty acid oxidation. FEMS Microbiology Reviews 15, 85–94. https://doi.org/10.1111/j.1574-6976.1994.tb00127.x

    Schröder, I., Johnson, E., de Vries, S., 2003. Microbial ferric iron reductases. FEMS Microbiology Reviews 27, 427–447. https://doi.org/10.1016/S0168-6445(03)00043-3

    Smercina, D.N., Evans, S.E., Friesen, M.L., Tiemann, L.K., 2019. To Fix or Not To Fix: Controls on Free-Living Nitrogen Fixation in the Rhizosphere. Applied and Environmental Microbiology 85, e02546-18. https://doi.org/10.1128/AEM.02546-18

    Sobolev, D., Roden, E., 2001. Suboxic Deposition of Ferric Iron by Bacteria in Opposing Gradients of Fe(II) and Oxygen at Circumneutral pH. Applied and Environmental Microbiology 67, 1328–34. https://doi.org/10.1128/AEM.67.3.1328-1334.2001

    Stetter, K.O., Segerer, A., Zillig, W., Huber, G., Fiala, G., Huber, R., König, H., 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Systematic and Applied Microbiology 7, 393–397. https://doi.org/10.1016/S0723-2020(86)80040-6

    Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M., 1999. Missing lithotroph identified as new planctomycete. Nature 400, 446–449. https://doi.org/10.1038/22749

    Thamdrup, B., Dalsgaard, T., 2002. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments. Applied and Environmental Microbiology 68, 1312–1318. https://doi.org/10.1128/AEM.68.3.1312-1318.2002

    Thamdrup, B., Finster, K., Hansen, J.W., Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction or iron or manganese. Applied and Environmental Microbiology 59, 101–108. https://doi.org/10.1128/aem.59.1.101-108.1993

    Thauer, R.K., 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture. Microbiology (Reading). https://doi.org/10.1099/00221287-144-9-2377

    Timmers, P.H.A., Suarez-Zuluaga, D.A., van Rossem, M., Diender, M., Stams, A.J.M., Plugge, C.M., 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME Journal 10, 1400–1412. https://doi.org/10.1038/ismej.2015.213

    Timmers, P.H.A., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.S.M., Stams, A.J.M., 2017. Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea. https://doi.org/10.1155/2017/1654237

    Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., Schleper, C., 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. U.S.A. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108

    Urrutia, M.M., Roden, E.E., Zachara, J.M., 1999. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 4022–4028. https://doi.org/10.1021/es990447b

    van den Berg, E.M., Elisário, M.P., Kuenen, J.G., Kleerebezem, R., van Loosdrecht, M.C.M., 2017. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria. Frontiers in Microbiology 8, 1684. https://doi.org/10.3389/fmicb.2017.01684

    van Kessel, M., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lucker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555-+. https://doi.org/10.1038/nature16459

    van Niftrik, L., Jetten, M.S.M., 2012. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 76, 585–596. https://doi.org/10.1128/MMBR.05025-11

    Versantvoort, W., Guerrero-Cruz, S., Speth, D.R., Frank, J., Gambelli, L., Cremers, G., van Alen, T., Jetten, M.S.M., Kartal, B., Op den Camp, H.J.M., Reimann, J., 2018. Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Frontiers in Microbiology 9, 1672. https://doi.org/10.3389/fmicb.2018.01672

    Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764. https://doi.org/10.1038/nrmicro1490

    Zhu, G., Wang, S., Wang, W., Wang, Y., Zhou, L., Jiang, B., Op den Camp, H.J.M., Risgaard-Petersen, N., Schwark, L., Peng, Y., Hefting, M.M., Jetten, M.S.M., Yin, C., 2013. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nature Geoscience 6, 103–107. https://doi.org/10.1038/ngeo1683

    Zinke, L.A., Glombitza, C., Bird, J.T., Røy, H., Jørgensen, B.B., Lloyd, K.G., Amend, J.P., Reese, B.K., 2019. Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and In Situ Geochemistry. Appl. Environ. Microbiol. 85, e02164-18. https://doi.org/10.1128/AEM.02164-18


    This page titled 5.6: References is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Matthew F Kirk via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?