5.6: References
- Page ID
- 131835
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Anantharaman, K., Hausmann, B., Jungbluth, S.P., Kantor, R.S., Lavy, A., Warren, L.A., Rappe, M.S., Pester, M., Loy, A., Thomas, B.C., Banfield, J.F., 2018. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J 12, 1715–1728. https://doi.org/10.1038/s41396-018-0078-0
Anderson, L. Davis, Kent, D.B., Davis, J.A., 1994. Batch experiments characterizing the reduction of chromium(VI) using suboxic material from a mildly reducing sand and gravel aquifer. Environ. Sci. Technol. 28, 178–185. https://doi.org/10.1021/es00050a025
Andrews, S.C., 1998. Iron Storage in Bacteria, in: Poole, R.K. (Ed.), Advances in Microbial Physiology. Academic Press, pp. 281–351. https://doi.org/10.1016/S0065-2911(08)60134-4
Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., Rey-Sanchez, C., Daly, R.A., Mirfenderesgi, G., Hoyt, D.W., Riley, W.J., Miller, C.S., Bohrer, G., Wrighton, K.C., 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications 8, 1567. https://doi.org/10.1038/s41467-017-01753-4
Arndt, S., Jørgensen, B., LaRowe, D.E., Middelburg, J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 123, 53–86. https://doi.org/10.1016/j.earscirev.2013.02.008
Bak, F., Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326, 891–892. https://doi.org/10.1038/326891a0
Balch, W.E., Wolfe, R.S., 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32, 781–791. https://doi.org/10.1128/aem.32.6.781-791.1976
Barton, L., Fardeau, M.-L., Fauque, G., 2014. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. Metal ions in life sciences 14, 237–77. https://doi.org/10.1007/978-94-017-9269-1_10
Benner, S.G., Hansel, C.M., Wielinga, B.W., Barber, T.M., Fendorf, S., 2002. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 36, 1705–1711.
Benning, L.G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways in the Fe-S system below 100 degrees C. Chem. Geol. 167, 25–51.
Berg, J.M., Tymoczko, J.L., Stryer, L., 2002. Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia, in: Biochemistry.
Berner, R.A., 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326. https://doi.org/10.1038/nature02131
Berner, R.A., 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51, 359–365. https://doi.org/10.1306/212F7C7F-2B24-11D7-8648000102C1865D
Berner, R.A., 1970. Sedimentary pyrite formation. Am. J. Sci. 268, 1–23.
Bijay-Singh, Craswell, E., 2021. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences 3, 518. https://doi.org/10.1007/s42452-021-04521-8
Bird, L.J., Bonnefoy, V., Newman, D.K., 2011. Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology 19, 330–340. https://doi.org/10.1016/j.tim.2011.05.001
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626. https://doi.org/10.1038/35036572
Bonneville, S., Behrends, T., Van Cappellen, P., 2009. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship. Geochimica et Cosmochimica Acta 73, 5273–5282. https://doi.org/10.1016/j.gca.2009.06.006
Bonneville, S., Van Cappellen, P., Behrends, T., 2004. Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chemical Geology 212, 255–268. https://doi.org/10.1016/j.chemgeo.2004.08.015
Borrel, G., O’Toole, P.W., Harris, H.M.B., Peyret, P., Brugere, J.-F., Gribaldo, S., 2013. Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis. Genome Biology and Evolution 5, 1769–1780. https://doi.org/10.1093/gbe/evt128
Brosnan, J.T., Brosnan, M.E., 2006. The sulfur-containing amino acids: an overview. J Nutr 136, 1636S–1640S. https://doi.org/10.1093/jn/136.6.1636S
Bryce, C., Blackwell, N., Schmidt, C., Otte, J., Huang, Y.-M., Kleindienst, S., Tomaszewski, E., Schad, M., Warter, V., Peng, C., Byrne, J.M., Kappler, A., 2018. Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environmental Microbiology 20, 3462–3483. https://doi.org/10.1111/1462-2920.14328
Bu, C., Wang, Y., Ge, C., Ahmad, H.A., Gao, B., Ni, S.-Q., 2017. Dissimilatory Nitrate Reduction to Ammonium in the Yellow River Estuary: Rates, Abundance, and Community Diversity. Scientific Reports 7, 6830. https://doi.org/10.1038/s41598-017-06404-8
Burdige, D.J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chem. Rev. 107, 467–485. https://doi.org/10.1021/cr050347q
Burgin, A.J., Hamilton, S.K., 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5, 89–96. https://doi.org/10.1890/1540-9295(2007)5[89:hwotro]2.0.co;2
Canfield, D.E., 1989. Reactive iron in marine-sediments. Geochim. Cosmochim. Acta 53, 619–632.
Canfield, D.E., Thamdrup, B., 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology 7, 385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202.
Cosmidis, J., Benzerara, 2022. Why do microbes make minerals? Comptes Rendus. Géoscience 354, 1–39. https://doi.org/10.5802/crgeos.107
Costa, K.C., Leigh, J.A., 2014. Metabolic versatility in methanogens. Curr. Opin. Biotech. 29, 70–75. https://doi.org/10.1016/j.copbio.2014.02.012
Cutting, R.S., Coker, V.S., Fellowes, J.W., Lloyd, J.R., Vaughan, D.J., 2009. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta 73, 4004–4022. https://doi.org/10.1016/j.gca.2009.04.009
Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdrup, B., Acuña-González, J., 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608. https://doi.org/10.1038/nature01526
De Leeuw, J.W., Largeau, C., 1993. A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal, and Petroleum Formation, in: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications. Springer US, Boston, MA, pp. 23–72. https://doi.org/10.1007/978-1-4615-2890-6_2
Devereux, R., He, S.H., Doyle, C.L., Orkland, S., Stahl, D.A., LeGall, J., Whitman, W.B., 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. Journal of Bacteriology 172, 3609–3619. https://doi.org/10.1128/jb.172.7.3609-3619.1990
Dong, H.L., Jaisi, D.P., Kim, J., Zhang, G.X., 2009. Microbe-clay mineral interactions. Am. Miner. 94, 1505–1519. https://doi.org/10.2138/am.2009.3246
Ehrlich, H.L., Fox, S.I., 1967. Copper sulfide precipitation by yeasts from Acid mine-waters. Appl Microbiol 15, 135–139. https://doi.org/10.1128/am.15.1.135-139.1967
Ehrlich, H.L., Newman, D.K., 2009. Geomicrobiology, 5th ed. CRC Press.
Eldor, P., 2015. Soil microbiology, ecology and biochemistry, 4th ed. Academic Press, London, England.
Emerson, D., 2012. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem Soc Trans 40, 1211–1216. https://doi.org/10.1042/BST20120154
Emerson, D., Fleming, E.J., McBeth, J.M., 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64, 561–583. https://doi.org/10.1146/annurev.micro.112408.134208
Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., Kartal, B., 2016. Archaea catalyze irondependent anaerobic oxidation of methane. Proc. Nat. Acad. Sci. 113, 12792–12796.
Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W., 2000. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290, 291–296. https://doi.org/10.1126/science.290.5490.291
Ferousi, C., Lindhoud, S., Baymann, F., Kartal, B., Jetten, M.S., Reimann, J., 2017. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology 37, 129–136. https://doi.org/10.1016/j.cbpa.2017.03.009
Ferry, J.G., 2010. How to Make a Living by Exhaling Methane, in: Gottesman, S., Harwood, C.S. (Eds.), Annual Review of Microbiology. Annual Reviews, Palo Alto, pp. 453–473. https://doi.org/10.1146/annurev.micro.112408.134051
Finster, K., 2008. Microbiological disproportionation of inorganic sulfur compounds. Journal of Sulfur Chemistry 29, 281–292. https://doi.org/10.1080/17415990802105770
Flynn, T.M., O’Loughlin, E.J., Mishra, B., DiChristina, T.J., Kemner, K.M., 2014. Sulfur-mediated electron shuttling during bacterial iron reduction. Science 344, 1039–1042. https://doi.org/10.1126/science.1252066
Gaby, J., Buckley, D., 2015. Assessment of Nitrogenase Diversity in the Environment, in: Biological Nitrogen Fixation. pp. 209–216. https://doi.org/10.1002/9781119053095.ch20
Gralnick, J.A., Newman, D.K., 2007. Extracellular respiration. Mol. Microbiol. 65, 1–11. https://doi.org/10.1111/j.1365-2958.2007.05778.x
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296. https://doi.org/10.1038/nature06592
Guerrero-Cruz, S., Vaksmaa, A., Horn, M.A., Niemann, H., Pijuan, M., Ho, A., 2021. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Frontiers in Microbiology 12, 1057. https://doi.org/10.3389/fmicb.2021.678057
Hardison, A.K., Algar, C.K., Giblin, A.E., Rich, J.J., 2015. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N-2 production. Geochimica Et Cosmochimica Acta 164, 146–160. https://doi.org/10.1016/j.gca.2015.04.049
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570. https://doi.org/10.1038/nature12375
Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81–115. https://doi.org/10.1016/0304-4203(95)00008-F
Hedges, J.I., Keil, R.G., Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27, 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1
Holmes, D.E., Bond, D.R., Lovley, D.R., 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234–1237. https://doi.org/10.1128/aem.70.2.1234-1237.2004
Hori, T., Aoyagi, T., Itoh, H., Narihiro, T., Oikawa, A., Suzuki, K., Ogata, A., Friedrich, M.W., Conrad, R., Kamagata, Y., 2015. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front. Microbiol. 6. https://doi.org/10.3389/fmicb.2015.00386
Jetten, M., Op den Camp, H., Kuenen, J.G., Strous, M., 2010. Description of the order brocadiales. Mitochondrion.
Jetten, M.S.M., 2008. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909. https://doi.org/10.1111/j.1462-2920.2008.01786.x
Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., Zhang, H., 2015. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering 20, 643–651. https://doi.org/10.1007/s12257-015-0009-0
Jin, Q., Kirk, M.F., 2016. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01696
Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed - the role of sulfate reduction. Nature 296, 643–645. https://doi.org/10.1038/296643a0
Kamp, A., Høgslund, S., Risgaard-Petersen, N., Stief, P., 2015. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes. Frontiers in Microbiology 6, 1492. https://doi.org/10.3389/fmicb.2015.01492
Kandasamy, S., Nagender Nath, B., 2016. Perspectives on the Terrestrial Organic Matter Transport and Burial along the Land-Deep Sea Continuum: Caveats in Our Understanding of Biogeochemical Processes and Future Needs. Frontiers in Marine Science 3, 259. https://doi.org/10.3389/fmars.2016.00259
Kartal, B., Keltjens, J.T., 2016. Anammox Biochemistry: a Tale of Heme c Proteins. Trends in Biochemical Sciences 41, 998–1011. https://doi.org/10.1016/j.tibs.2016.08.015
Kirk, M.F., Jin, Q., Haller, B.R., 2016. Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction. Groundwater 54, 406–413. https://doi.org/10.1111/gwat.12364
Kirk, M.F., Santillan, E.F.U., Sanford, R.A., Altman, S.J., 2013. CO2-induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors. Geochim. Cosmochim. Acta 122, 198–208. https://doi.org/10.1016/j.gca.2013.08.018
Klueglein Nicole, Zeitvogel Fabian, Stierhof York-Dieter, Floetenmeyer Matthias, Konhauser Kurt O., Kappler Andreas, Obst Martin, 2014. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria. Applied and Environmental Microbiology 80, 1051–1061. https://doi.org/10.1128/AEM.03277-13
Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell Publishing, Malden, MA. Konhauser, K.O., Kappler, A., Roden, E.E., 2011. Iron in microbial metabolisms. Elements 7, 89–93. https://doi.org/10.2113/gselements.7.2.89
Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546. https://doi.org/10.1038/nature03911
Kraft, B., Tegetmeyer, H.E., Sharma, R., Klotz, M.G., Ferdelman, T.G., Hettich, R.L., Geelhoed, J.S., Strous, M., 2014. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676. https://doi.org/10.1126/science.1254070
Kuenen, J.G., 2020. Anammox and beyond. Environmental Microbiology 22, 525–536. https://doi.org/10.1111/1462-2920.14904
Kumar, S., Herrmann, M., Thamdrup, B., Schwab, V.F., Geesink, P., Trumbore, S.E., Totsche, K.-U., Küsel, K., 2017. Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes. Frontiers in Microbiology 8, 1951. https://doi.org/10.3389/fmicb.2017.01951
Kurth, J.M., Nobu, M.K., Tamaki, H., de Jonge, N., Berger, S., Jetten, M.S.M., Yamamoto, K., Mayumi, D., Sakata, S., Bai, L., Cheng, L., Nielsen, J.L., Kamagata, Y., Wagner, T., Welte, C.U., 2021. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. The ISME Journal. https://doi.org/10.1038/s41396-021-01025-6
Kuypers, M.M. M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann R., Jørgensen, B.B., Jetten M.S.M., 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences 102, 6478–6483. https://doi.org/10.1073/pnas.0502088102
Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9
Langmuir, D., 1997. Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River.
Larsen, O., Postma, D., 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica Et Cosmochimica Acta 65, 1367–1379. https://doi.org/10.1016/S0016-7037(00)00623-2
Lentini, C.J., Wankel, S.D., Hansel, C.M., 2012. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol. 3. https://doi.org/10.3389/fmicb.2012.00404
Li, X., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J., Katayama, Y., 2010. Oxidation of Elemental Sulfur by Fusarium solani Strain THIF01 Harboring Endobacterium Bradyrhizobium sp. MICROBIAL ECOLOGY 60, 96–104. https://doi.org/10.1007/s00248-010-9699-1
Lindberg, R.D., Runnells, D.D., 1984. Groundwater redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225, 925–927. https://doi.org/10.1126/science.225.4665.925
Lovley, D.R., Coates, J.D., BluntHarris, E.L., Phillips, E.J.P., Woodward, J.C., 1996. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448. https://doi.org/10.1038/382445a0
Lovley, D.R., Holmes, D.E., 2021. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-021-00597-6
Lovley, D.R., Phillips, E.J.P., Lonergan, D.J., Widman, P.K., 1995. Fe(III) AND S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61, 2132–2138.
Lovley, D.R., Roden, E.E., Phillips, E.J.P., Woodward, J.C., 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113, 41–53. https://doi.org/10.1016/0025-3227(93)90148-o
Marquart, K.A., Haller, B.R., Paper, J.M., Flynn, T.M., Boyanov, M.I., Shodunke, G., Gura, C., Jin, Q., Kirk, M.F., 2019. Influence of pH on the balance between methanogenesis and iron reduction. Geobiology 17, 185–198. https://doi.org/10.1111/gbi.12320
Martens, C.S., Berner, R.A., 1974. Methane production in interstitial waters of sulfate-depleted marine sediments. Science 185, 1167–1169. https://doi.org/10.1126/science.185.4157.1167
McDermott, J.M., Seewald, J.S., German, C.R., Sylva, S.P., 2015. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl. Acad. Sci. U.S.A. 112, 7668–7672. https://doi.org/10.1073/pnas.1506295112
Müller, H., Marozava, S., Probst, A.J., Meckenstock, R.U., 2020. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME Journal 14, 623–634. https://doi.org/10.1038/s41396- 019-0554-1
Müller, V., 2003. Energy Conservation in Acetogenic Bacteria. Appl. Environ. Microbiol. 69, 6345. https://doi.org/10.1128/AEM.69.11.6345-6353.2003
Muyzer, G., Stams, A.J.M., 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology 6, 441–454. https://doi.org/10.1038/nrmicro1892
Oremland, R.S., Polcin, S., 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Env. Microbiol. 44, 1270–1276.
Pan, H., Yuan, D., Liu, W., Pi, Y., Wang, S., Zhu, G., 2020. Biogeographical distribution of dissimilatory nitrate reduction to ammonium (DNRA) bacteria in wetland ecosystems around the world. Journal of Soils and Sediments 20, 3769–3778. https://doi.org/10.1007/s11368-020-02707-y
Pang, Y., Wang, J., 2021. Various electron donors for biological nitrate removal: A review. Science of The Total Environment 794, 148699. https://doi.org/10.1016/j.scitotenv.2021.148699
Paper, J.M., Flynn, T.M., Boyanov, M.I., Kemner, K.M., Haller, B.R., Crank, K., Lower, A., Jin, Q., Kirk, M.F., 2021. Influences of pH and substrate supply on the ratio of iron to sulfate reduction. Geobiology 19. https://doi.org/10.1111/gbi.12444
Piepenbrock, A., Schröder, C., Kappler, A., 2014. Electron Transfer from Humic Substances to Biogenic and Abiogenic Fe(III) Oxyhydroxide Minerals. Environ. Sci. Technol. 48, 1656–1664. https://doi.org/10.1021/es404497h
Postma, D., Jakobsen, R., 1996. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175.
Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.P., Wagner, M., 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000
Pyzik, A., Sommer, S., 1981. Sedimentary iron monosulfides: Kinetics and mechanisms of formation. Geochim. Cosmochim. Acta 45, 687–698. https://doi.org/10.1016/0016-7037(81)90042-9
Ragsdale, S.W., Pierce, E., 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim. Biophys. Acta 1784, 1873–1898. https://doi.org/10.1016/j.bbapap.2008.08.012
Reeves, E.P., Fiebig, J., 2020. Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere. Elements 16, 25–31. https://doi.org/10.2138/gselements.16.1.25
Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Wat. Res. 42, 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020
Roden, E.E., 2006. Geochemical and microbiological controls on dissimilatory iron reduction. C. R. Geosci. 338, 456–467. https://doi.org/10.1016/j.crte.2006.04.009
Roden, E.E., 2003. Fe(III) oxide reactivity toward biological versus chemical reduction. Environmental Science & Technology 37, 1319–1324. https://doi.org/10.1021/es026038o
Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., Xu, H.F., 2010. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421. https://doi.org/10.1038/ngeo870
Roden, E.E., Urrutia, M.M., 1999. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 1847–1853.
Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R., 2014a. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605. https://doi.org/10.1128/aem.00895-14
Rotaru, A.E., Shrestha, P.M., Liu, F.H., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., Lovley, D.R., 2014b. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415. https://doi.org/10.1039/c3ee42189a
Rütting, T., Boeckx, P., Müller, C., Klemedtsson, L., 2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791. https://doi.org/10.5194/bg-8-1779-2011
Sandfeld, T., Marzocchi, U., Petro, C., Schramm, A., Risgaard-Petersen, N., 2020. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. https://doi.org/10.1038/s41396-020-0607-5
Schink, B., Friedrich, M., 1994. Energetics of syntrophic fatty acid oxidation. FEMS Microbiology Reviews 15, 85–94. https://doi.org/10.1111/j.1574-6976.1994.tb00127.x
Schröder, I., Johnson, E., de Vries, S., 2003. Microbial ferric iron reductases. FEMS Microbiology Reviews 27, 427–447. https://doi.org/10.1016/S0168-6445(03)00043-3
Smercina, D.N., Evans, S.E., Friesen, M.L., Tiemann, L.K., 2019. To Fix or Not To Fix: Controls on Free-Living Nitrogen Fixation in the Rhizosphere. Applied and Environmental Microbiology 85, e02546-18. https://doi.org/10.1128/AEM.02546-18
Sobolev, D., Roden, E., 2001. Suboxic Deposition of Ferric Iron by Bacteria in Opposing Gradients of Fe(II) and Oxygen at Circumneutral pH. Applied and Environmental Microbiology 67, 1328–34. https://doi.org/10.1128/AEM.67.3.1328-1334.2001
Stetter, K.O., Segerer, A., Zillig, W., Huber, G., Fiala, G., Huber, R., König, H., 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Systematic and Applied Microbiology 7, 393–397. https://doi.org/10.1016/S0723-2020(86)80040-6
Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M., 1999. Missing lithotroph identified as new planctomycete. Nature 400, 446–449. https://doi.org/10.1038/22749
Thamdrup, B., Dalsgaard, T., 2002. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments. Applied and Environmental Microbiology 68, 1312–1318. https://doi.org/10.1128/AEM.68.3.1312-1318.2002
Thamdrup, B., Finster, K., Hansen, J.W., Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction or iron or manganese. Applied and Environmental Microbiology 59, 101–108. https://doi.org/10.1128/aem.59.1.101-108.1993
Thauer, R.K., 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture. Microbiology (Reading). https://doi.org/10.1099/00221287-144-9-2377
Timmers, P.H.A., Suarez-Zuluaga, D.A., van Rossem, M., Diender, M., Stams, A.J.M., Plugge, C.M., 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME Journal 10, 1400–1412. https://doi.org/10.1038/ismej.2015.213
Timmers, P.H.A., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.S.M., Stams, A.J.M., 2017. Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea. https://doi.org/10.1155/2017/1654237
Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., Schleper, C., 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. U.S.A. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108
Urrutia, M.M., Roden, E.E., Zachara, J.M., 1999. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 4022–4028. https://doi.org/10.1021/es990447b
van den Berg, E.M., Elisário, M.P., Kuenen, J.G., Kleerebezem, R., van Loosdrecht, M.C.M., 2017. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria. Frontiers in Microbiology 8, 1684. https://doi.org/10.3389/fmicb.2017.01684
van Kessel, M., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lucker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555-+. https://doi.org/10.1038/nature16459
van Niftrik, L., Jetten, M.S.M., 2012. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 76, 585–596. https://doi.org/10.1128/MMBR.05025-11
Versantvoort, W., Guerrero-Cruz, S., Speth, D.R., Frank, J., Gambelli, L., Cremers, G., van Alen, T., Jetten, M.S.M., Kartal, B., Op den Camp, H.J.M., Reimann, J., 2018. Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Frontiers in Microbiology 9, 1672. https://doi.org/10.3389/fmicb.2018.01672
Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764. https://doi.org/10.1038/nrmicro1490
Zhu, G., Wang, S., Wang, W., Wang, Y., Zhou, L., Jiang, B., Op den Camp, H.J.M., Risgaard-Petersen, N., Schwark, L., Peng, Y., Hefting, M.M., Jetten, M.S.M., Yin, C., 2013. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nature Geoscience 6, 103–107. https://doi.org/10.1038/ngeo1683
Zinke, L.A., Glombitza, C., Bird, J.T., Røy, H., Jørgensen, B.B., Lloyd, K.G., Amend, J.P., Reese, B.K., 2019. Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and In Situ Geochemistry. Appl. Environ. Microbiol. 85, e02164-18. https://doi.org/10.1128/AEM.02164-18