Skip to main content
Biology LibreTexts

7.6: R Markdown to Recreate Analyses

  • Page ID
    21774
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    R markdown to recreate analyses

    Reading in the data files

    First we read in the data files.

    sqTree<-read.tree(text=getURL("https://raw.githubusercontent.com/lukejharmon/pcm/master/datafiles/squamate.phy"))
    plot(sqTree)

    sqData<-read.csv(text=getURL("https://raw.githubusercontent.com/lukejharmon/pcm/master/datafiles/brandley_table.csv"))

    Simulate binary character on tree

    This code generates plots like Figure 7.4

    qMatrix<-cbind(c(-1, 1), c(1, -1))*0.001
    sh_slow<-sim.history(sqTree, qMatrix, anc="1")
    ## Done simulation(s).
    plotSimmap(sh_slow, pts=F, ftype="off")
    ## no colors provided. using the following legend:
    ##       1       2 
    ## "black"   "red"
    add.simmap.legend(leg=c("limbed", "limbless"), colors=c("black", "red"), x=0.024, y =23, prompt=F)

    qMatrix<-cbind(c(-1, 1), c(1, -1))*0.01
    sh_fast<-sim.history(sqTree, qMatrix, anc="1")
    ## Done simulation(s).
    plotSimmap(sh_fast, pts=F, ftype="off")
    ## no colors provided. using the following legend:
    ##       1       2 
    ## "black"   "red"

    qMatrix<-cbind(c(-0.02, 0.02), c(0.005, -0.005))
    sh_asy<-sim.history(sqTree, qMatrix, anc="1")
    ## Note - the rate of substitution from i->j should be given by Q[j,i].
    ## Done simulation(s).
    plotSimmap(sh_asy, pts=F, ftype="off")
    ## no colors provided. using the following legend:
    ##       1       2 
    ## "black"   "red"

    Find the limbless species

    Brandley et al.’s data has limb measurements. We will get our discrete character by counting species with zero-length fore- and hind limbs as limbless. This is different from the original analysis in Brandley et al., which counts things like spurs as “limbs” - and so our results might differ from theirs a bit.

    limbless<-as.numeric(sqData[,"FLL"]==0 & sqData[,"HLL"]==0)
    sum(limbless)
    ## [1] 51
    # get names that match
    nn<-sqData[,1]
    nn2<-sub(" ", "_", nn)
    names(limbless)<-nn2

    Fit Mk model

    We can fit a symmetric Mk model to these data using both likelihood and MCMC

    # likelihood
    td<-treedata(sqTree, limbless)
    ## Warning in treedata(sqTree, limbless): The following tips were not found in 'phy' and were dropped from 'data':
    ##  Gonatodes_albogularis
    ##  Lepidophyma_flavimaculatum
    ##  Trachyboa_boulengeri
    dModel<-fitDiscrete(td$phy, td$data)
    
    # MCMC
    mk_diversitree<-make.mk2(force.ultrametric(td$phy), td$data[,1])
    simplemk<-constrain(mk_diversitree, q01~q10)
    er_bayes<-mcmc(simplemk, x.init=0.1, nsteps=10000, w=0.01)
    ## 1: {0.0189} -> -141.93605
    ## 2: {0.0162} -> -135.45732

    7.6: R Markdown to Recreate Analyses is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?