Skip to main content
Biology LibreTexts

1.16: Algebra Review Guide

  • Page ID
    121699
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Kendra Meade and Anthony Assibi Mahama

    Linear Equations, Formulas, and Inequalities

    1. Eliminate denominators (multiply by Least Common Denominator)
    2. Remove parentheses (distribute)
    3. Get variable terms on one side (add/subtract principles)
    4. Combine like terms (for formulas, factor the variable if it appears in more than 1 term)
    5. Get the variable alone (multiply/divide principles)
      Note: For inequalities, division or multiplication by a negative number will switch the inequality symbol around
    6. Check the solution
    Practice Problems

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-79

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-80

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-81

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-82

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-83

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-84

    An interactive H5P element has been excluded from this version of the text. You can view it online here:
    https://iastate.pressbooks.pub/quantitativeplantbreeding/?p=339#h5p-85

    Terminology

    Various terms are used in carrying out algebraic operations. A good understanding of these enables calculations to be carried out correctly. Some common terms are shown in Table 1.

    Table 1 Algebraic vocabulary terms and their definition.
    Vocabulary Definition
    Variable A letter that can be replaced by any number
    Constant A capital letter that represents a fixed number
    Expression Consists of variables, numbers and operation symbols
    (ex: \small{2x - 5 + 3y^{2} - \frac{x}{3}})
    Equation When “=” is between two algebraic expressions
    (equation can be true \small{x + 2 = x + 2}, false \small{x+2 = x + 3}
    or neither \small{\textrm{or 3x -9 = 4x - 14}})
    Solution A value replacing the variable to make the equation true
    (\small{x = 5} for \small{3x - 9 = 4x - 14})
    Solved Having found the values that make the equation true
    Translate To convert words to an algebraic expression or equation
    Substitute Replacing a variable with a given number
    Evaluate To find a solution
    Factor Multiple or Product
    Factoring Reversing distributive law and turning it into the factors (multiples)
    Equivalent Expressions that, when evaluated, produce the same value
    Terms A number, var (variable), or a product/quotient of numbers and/or variables separated by + or – signs
    (Expression \small{5 - 3xy - \normalsize \frac{2x}{5}} contains three terms)
    Fraction notation A way of showing the division of two numbers
    (Numerator: top, Denominator: bottom)
    Undefined \small{ \frac{a}{0}}: Division by zero is undefined — There is no solution
    Zero fraction \small{ \frac{0}{a}}: Zero in the numerator makes fraction equal to zero
    Fraction notation for 1 Any nonzero number divided by itself is 1: \small{ \frac{a}{a} = 1}
    Reciprocal Multiplicative inverse: if \small{ a\neq 0}, \small{ \frac{a\cdot 1}{a}=\frac{a}{b}\cdot \frac{b}{a} =1}
    Zero has no reciprocals. The reciprocal of a is \small{a=\frac{1}{a}}.
    Opposite Additive inverse: opposite of “a” is “-a” and \small{a+(-a)=0}.
    Prime number A natural number that is divisible by only two different factors: itself and 1
    Inequality A statement about the relative size of two objects. Indicated by <, >, ≪, ≫
    Law Definition
    Commutative For any real a and b, \small{a+b=b+a}, and
    \small{ a \cdot b = b \cdot a}
    Associative For any real a, b, and c, \small{a\cdot (b+c)=a \cdot b + a \cdot c}
    Distributive For any real a, b and c, \small{ \textrm{a + (b + c)}=(a + b) + c, {a\cdot (b\cdot c)=(a\cdot b)\cdot c}}

    Operation With Fractions

    Simplifying Fractions

    1. Prime factorize each numerator and denominator
    2. Remove factors that are the same from the numerator and denominator and replace them with “1”.
      These form fractions that are equal to “1”.
    3. Multiply the remaining factors in the numerator
    4. Multiply the remaining factors in the denominator

    Simplifying Fractions Example

    \[\frac{60}{126}=2^{2}\cdot 3\cdot \frac{5}{2}\cdot 3^{2}\cdot 7=\frac{10}{21}\]

    Multiplying Fractions

    1. Prime factorize each numerator and denominator
    2. Remove factors that are the same from any numerator and any denominator and replace them with “1”. These form fractions that are equal to “1”.
    3. Multiply the remaining factors in all numerators
    4. Multiply the remaining factors in all denominators

    Multiplying Fractions Example

    \[\frac{7}{12}\cdot \frac{30}{21}=\frac{7}{2^{2}}\cdot 3\cdot 2\cdot 3\cdot \frac{5}{3}=\frac{5}{6}\]

    Dividing Fractions

    1. Change division to multiplication by the inverse of the second fraction
    2. Multiply as above

    Dividing Fractions Example

    \[\frac{4}{18}\div\frac{10}{21}=\frac{4}{18}\cdot {\frac{21}{10}}=\frac{2^{2}}{2}\cdot 3^{2}\cdot 3\cdot \frac{7}{2}\cdot 5=\frac{1}{3}\cdot \frac{7}{5}=\frac{7}{15}\]

    Add and Subtract

    1. If denominators are the same, go to step 4
    2. Otherwise, prime factorize each denominator
    3. Find the Least Common Denominator (LCD) by multiplying each fraction by a fraction equal to “1”, made out of the missing factors from each denominator
    4. Once denominators are the same, add/subtract numerators and write over the LCD
    5. Simplify as above

    Adding/Subtracting Fractions Example 1: Same denominator

    \[\frac{2}{14}+\frac{5}{14}=\frac{7}{14}=\frac{7}{2}\cdot 7=\frac{1}{2}\]


    Adding/Subtracting Fractions Example 2: One denominator is a multiple of the other

    \[\frac{3}{2}-\frac{5}{6}=\frac{3}{2}-\frac{5}{2}\cdot 3=\frac{3}{2}\cdot \frac{3}{3}-\frac{5}{2}\cdot 3=9-\frac{5}{2}\cdot 3=\frac{4}{2}\cdot 3=\frac{2^{2}}{2}\cdot 3=\frac{2}{3}\]


    Adding/Subtracting Fractions Example 3: Different denominators

    \[\frac{9}{42}-\frac{3}{15}=\frac{9}{2}\cdot 3\cdot 7-\frac{3}{3}\cdot 5=\frac{9}{2}\cdot 3\cdot 7\cdot \frac{5}{5}-\frac{3}{3}\cdot 5\cdot 2\cdot \frac{7}{2}\cdot 7=45-\frac{42}{2}\cdot 3\cdot 5\cdot 7=32\cdot 3\cdot 5\cdot 7=\frac{1}{2}\cdot 5\cdot 7=\frac{1}{70}\]

    Rules of Exponents

    Zero and One

    • a^{0}=1
    • a^{1}=a

    Multiply and Divide

    • \frac{a}{b}\times\frac{a}{n}=a^{b+n}
    • \frac{a^{b}}{a^{n}}=a^{b-n}

    Distribute

    • (a^{b}c^{n})^p=a^{bp}c^{np}
    • (\frac{a^{b}}{c^{n}})^p=a^{bp}c^{np}

    Negative

    • a^{-n}=\frac{1}{a^{n}}
    • \frac{1}{a^{-n}}=a^{n}
    • \frac{a^{-n}}{b^{-c}}=\frac{b^{c}}{a^{n}}

    Rules of Radicals

    Add and Subtract Radicals

    Simplify each radical by removing perfect square roots out of the radical to get like radicals, then combine the number of like radicals.

    Multiply and Divide Radicals

    \[\sqrt[n]{a}\cdot\sqrt[n]{b} =\sqrt[n]{ab}\]

    \[\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}\]

    If no n is given, assume that n is 2, and a square root is required.

    Plus/Minus Sign

    Used to indicate that a value can be of either sign. Often used to construct confidence intervals.

    \[p\pm x + y = p +x + y, \textrm{or p - x + y}\]

    Data Transformation

    Trigonometry and Natural Logarithms

    Table 2 Trigonometric transformation terms and their reciprocals.
    Transformation Reciprocal of Transformation
    Sine (sin) Cosecant (csc or cosec) or Arcsine (arcsin)
    Cosine (cos) Secant (sec) or Arccosine (arccos)
    Tangent (tan) Cotangent (cot) or Arctangent (arctan)
    Arcsine (arcsin) Sine (sin)
    Natural logarithm (in or log or loge) Exponential (exp or en)

    Summation

    Summation (S) signifies that a series of terms should be added together.

    Given a series of numbers x_1, x_2, x_3x_n

    Sum all x_i starting at i=1 through i=n.

    \[\sum_{i=1}^{n}x^{i}=x_{1}+x_{2}+x_{3}+x_{4} + ... + x_{n}\]

    \[\textrm{Equation 1}\]

    How to cite this chapter: Kendra Meade and A. A. Mahama. 2023. Algebra Review Guide. In W. P. Suza, & K. R. Lamkey (Eds.), Quantitative Methods. Iowa State University Digital Press.


    1.16: Algebra Review Guide is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?