Skip to main content
Biology LibreTexts

1: Chemistry, Matter, and Measurement

  • Page ID
    175434
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The study of chemistry will open your eyes to a fascinating world. Chemical processes are continuously at work all around us. They happen as you cook and eat food, strike a match, shampoo your hair, and even read this page. Chemistry is called the central science because a knowledge of chemical principles is essential for other sciences. You might be surprised at the extent to which chemistry pervades your life.

    • 1.1: Prelude to Chemistry, Matter, and Measurement
    • 1.2: What is Chemistry?
    • 1.3: The Classification of Matter
    • 1.4: Measurements
    • 1.5: Expressing Numbers - Scientific Notation
    • 1.6: Expressing Numbers - Significant Figures
      This page details the concept of significant figures in scientific measurements, highlighting their role in maintaining precision. It explains rules for identifying significant figures, rounding methods, and applies these to various mathematical operations like multiplication and addition. The text also covers converting numbers into scientific notation and underscores the necessity of manually applying significant figure rules, as calculators do not automatically consider them.
    • 1.7: The International System of Units
      This page explains the International System of Units (SI), focusing on base units like meters and kilograms, and their significance in science. It contrasts SI with the U.S. English unit system and stresses accurate unit conversions. Derived units like volume are explored, along with energy measurements in joules and calories, and the concept of density.
    • 1.8: Converting Units
      This page emphasizes the significance of unit conversions across various fields, particularly nursing and pharmacy. It covers the importance of understanding conversion factors and significant figures, providing practical examples such as calculating the mass and volume of mercury. The role of pharmacists is highlighted, detailing their educational background and responsibilities in advising on medication.
    • 1.9: Metric/Imperial Conversion Errors
    • 1.10: Metric Prefixes - from yotta to yocto
      In introductory chemistry we use only a few of the most common metric prefixes, such as milli, centi, and kilo. Our various textbooks and lab manuals contain longer lists of prefixes, but few if any contain a complete list.
    • 1.11: Non-SI Units
    • 1.12: Prefixes
    • 1.13: SI Units
      The International System of Units (SI) is system of units of measurements that is widely used all over the world. This modern form of the Metric system is based around the number 10 for convenience. A set unit of prefixes have been established and are known as the SI prefixes or the metric prefixes (or units). The prefixes indicate whether the unit is a multiple or a fraction of the base ten.
    • 1.14: SI Units - A Summary
      The international system of units (Systeme International d'Units) was adopted by the General Conference on Weights and Measure in 1960, and the SI units are widely used today. All SI units are based on these basic units.
    • 1.15: Dosage Calculations
      This page emphasizes the critical need for accurate drug dosages to ensure effective treatment and avoid adverse effects. It discusses dosage measurement, guidelines for prescribing and dispensing, and calculations based on patient weight or surface area. Examples illustrate dosage calculations for patients, including conversions from pounds to kilograms.
    • 1.E: Chemistry, Matter, and Measurement (Exercises)
      This page discusses material properties, including chemical and physical attributes, classifications of substances as elements, compounds, or mixtures, and phase changes such as melting, boiling, and freezing. It includes definitions, examples of heterogeneous and homogeneous mixtures, and terminology related to phase transitions.
    • 1.S: Chemistry, Matter, and Measurement (Summary)
      This page summarizes key concepts in chemistry, including definitions of matter, properties, substances, and the importance of measurements using the SI system. Significant figures and scientific notation are essential for calculations, supported by conversion factors, especially in dosages. The understanding of these fundamentals reinforces the scientific method's application in studying the natural world.
    Template:HideTOC

    Thumbnail: Two small test tubes held in spring clamps. (CC BY-SA 3.0; mitchell125).


    This page titled 1: Chemistry, Matter, and Measurement is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.