Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 16 results
  • https://bio.libretexts.org/Courses/Manchester_Community_College_(MCC)/Remix_of_Openstax%3AMicrobiology_by_Parker_Schneegurt_et_al/11%3A_Control_of_Microbial_Growth/11.05%3A_Drug_Targets_on_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.03%3A_Inhibitors_of_Cell_Wall_Biosynthesis
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.04%3A_Inhibitors_of_Protein_Synthesis
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Mansfield_University_of_Pennsylvania/BSC_3271%3A_Microbiology_for_Health_Sciences_Sp21_(Kagle)/09%3A_Antimicrobial_Drugs/9.03%3A_Antibiotics
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/14%3A_Antimicrobial_Drugs/14.03%3A_Drugs_Targeting_Other_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Northwest_University/MKBN211%3A_Introductory_Microbiology_(Bezuidenhout)/07%3A_Antimicrobial_Drugs/7.01%3A_Overview_of_Antimicrobial_Therapy/7.1.05%3A_Antibiotic_Classifications
    Bactericidal antibiotics kill bacteria; bacteriostatic antibiotics slow their growth or reproduction.
  • https://bio.libretexts.org/Courses/Folsom_Lake_College/BIOL_440%3A_General_Microbiology_(Panoutsopoulos)/05%3A_Interactions_between_Microbes_and_Humans_and_Antimicrobial_Treatment/5.03%3A_Antimicrobial_Drugs/5.3.03%3A_Drugs_Targeting_Other_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.05%3A_Other_Antibiotics
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/17%3A_Antimicrobial_Drugs/17.3%3A_Antibacterial_Drugs
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Northwest_University/MKBN211%3A_Introductory_Microbiology_(Bezuidenhout)/06%3A_Culturing_Microorganisms/6.13%3A_6._13-_Mechanisms_of_Microbial_Control/6.13.02%3A_Damage_to_Proteins_and_Nucleic_Acids
    A bacteriostatic agent is a biological or chemical agent that stops bacteria from reproducing by targeting DNA replication and proteins.
  • https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Boundless)/06%3A_Culturing_Microorganisms/6.13%3A_Mechanisms_of_Microbial_Control/6.13B%3A_Damage_to_Proteins_and_Nucleic_Acids
    A bacteriostatic agent is a biological or chemical agent that stops bacteria from reproducing by targeting DNA replication and proteins.

Support Center

How can we help?