Loading [MathJax]/extensions/TeX/mhchem.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 2 results
  • https://bio.libretexts.org/Courses/Manchester_Community_College_(MCC)/Remix_of_Openstax%3AMicrobiology_by_Parker_Schneegurt_et_al/11%3A_Control_of_Microbial_Growth/11.05%3A_Drug_Targets_on_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/New_England_College/Microbiology_with_NEC/10%3A_Control_of_Microbial_Growth/10.05%3A_Drug_Targets_on_Prokaryote_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.

Support Center

How can we help?