Search
- https://bio.libretexts.org/Sandboxes/tholmberg_at_nwcc.edu/Introduction_to_Environmental_Science/6%3A_Climate_Change/6.2%3A_Anthropogenic_Climate_ChangeQuantitative evidence supports the relationship between atmospheric concentrations of carbon dioxide and temperature: as carbon dioxide rises global temperature rises. Qualitative evidence of climate ...Quantitative evidence supports the relationship between atmospheric concentrations of carbon dioxide and temperature: as carbon dioxide rises global temperature rises. Qualitative evidence of climate change exists as well. The current increase in atmospheric carbon dioxide has happened very quickly—in a matter of hundreds of years rather than thousands of years. As more and more of the world's population adopts a resource-intensive lifestyle the climate problem becomes worse.
- https://bio.libretexts.org/Courses/Norco_College/BIO_5%3A_General_Botany_(Friedrich_Finnern)/12%3A_TransportThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Map%3A_Raven_Biology_12th_Edition/36%3A_Transport_in_Plants/36.01%3A_Transport_MechanismsThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Workbench/BIOL-11B_Clovis_Community_College/07%3A_Plant_Physiology_and_Ecology/7.04%3A_Transport_of_Water_and_Solutes_in_Plantswhere Ψ s , Ψ p , Ψ g , and Ψ m refer to the solute, pressure, gravity, and matric potentials, respectively. “System” can refer to the water potential of the soil water (Ψ soil ), root water (Ψ root )...where Ψ s , Ψ p , Ψ g , and Ψ m refer to the solute, pressure, gravity, and matric potentials, respectively. “System” can refer to the water potential of the soil water (Ψ soil ), root water (Ψ root ), stem water (Ψ stem ), leaf water (Ψ leaf ) or the water in the atmosphere (Ψ atmosphere ): whichever aqueous system is under consideration.
- https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/General_Biology_2e_(OpenStax)/06%3A_Unit_VI-_Plant_Structure_and_Function/6.01%3A_Plant_Form_and_Physiology/6.1.06%3A_Transport_of_Water_and_Solutes_in_PlantsThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame_IN/Foundations_of_Form_and_Function/07%3A_Transport_and_Gas_Exchange/7.01%3A_Transport_MechanismsThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Workbench/South_Texas_College_-_Biology_for_Non-Majors/19%3A_Plant_Form_and_Physiology/19.06%3A_Transport_of_Water_and_Solutes_in_PlantsThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/General_Biology_1e_(OpenStax)/6%3A_Plant_Structure_and_Function/30%3A_Plant_Form_and_Physiology/30.5%3A_Transport_of_Water_and_Solutes_in_PlantsThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Bookshelves/Botany/Botany_(Ha_Morrow_and_Algiers)/04%3A_Plant_Physiology_and_Regulation/4.05%3A_TransportThe structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this m...The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.
- https://bio.libretexts.org/Bookshelves/Ecology/Biodiversity_(Bynum)/12%3A_Population_DiversityA population is a group of individuals of the same species that share aspects of their genetics or demography more closely with each other than with other groups of individuals of that species (where ...A population is a group of individuals of the same species that share aspects of their genetics or demography more closely with each other than with other groups of individuals of that species (where demography is the statistical characteristic of the population such as size, density, birth and death rates, distribution, and movement of migration). Population diversity may be measured in terms of the variation in genetic and morphological features that define the different populations.
- https://bio.libretexts.org/Courses/Thompson_Rivers_University/Principles_of_Biology_II_OL_ed/05%3A_Global_Change/5.03%3A_Climate_Change/5.3.02%3A_Anthropogenic_Climate_ChangeQuantitative evidence supports the relationship between atmospheric concentrations of carbon dioxide and temperature: as carbon dioxide rises global temperature rises. Qualitative evidence of climate ...Quantitative evidence supports the relationship between atmospheric concentrations of carbon dioxide and temperature: as carbon dioxide rises global temperature rises. Qualitative evidence of climate change exists as well. The current increase in atmospheric carbon dioxide has happened very quickly—in a matter of hundreds of years rather than thousands of years. As more and more of the world's population adopts a resource-intensive lifestyle the climate problem becomes worse.