Search
- https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology/07%3A_Microbial_Biochemistry/7.03%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/21%3A_Appendix_A_-_Biochemistry_Review/21.4%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/03%3A_Macromolecules/3.08%3A_Proteins_-_Building_BlocksAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/North_Central_State_College/BIOL_1550%3A_Microbiology_(2025)/03%3A_Macromolecules/3.09%3A_Protein_StructuresAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/07%3A_Microbial_Biochemistry/7.04%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/03%3A_Macromolecules/3.09%3A_Protein_StructuresAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/North_Central_State_College/BIOL_1550%3A_Microbiology_(2025)/03%3A_Macromolecules/3.08%3A_Proteins_-_Building_BlocksAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/01%3A_Unit_I-_Structure_and_Catalysis/04%3A_The_Three-Dimensional_Structure_of_Proteins/4.01%3A_Main_Chain_ConformationsThis page focuses on biochemistry learning goals related to protein structure, emphasizing protein backbone conformations, dihedral angles, and the significance of trans and cis peptide bonds. It disc...This page focuses on biochemistry learning goals related to protein structure, emphasizing protein backbone conformations, dihedral angles, and the significance of trans and cis peptide bonds. It discusses the preferred conformations of saturated fatty acid chains and the effects on secondary, tertiary, and quaternary structures.
- https://bio.libretexts.org/Courses/Sacramento_City_College/BIOL_440%3A_General_Microbiology_(Hughes)/02%3A_Week_2/02%3A_Microbial_Biochemistry/2.04%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/New_England_College/Microbiology_with_NEC/02%3A_Chemistry_and_Biochemistry/2.06%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.
- https://bio.libretexts.org/Courses/Manchester_Community_College_(MCC)/Remix_of_Openstax%3AMicrobiology_by_Parker_Schneegurt_et_al/02%3A_Chemistry_and_Biochemistry/2.07%3A_ProteinsAmino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous fun...Amino acids are capable of bonding together in essentially any number, yielding molecules of essentially any size that possess a wide array of physical and chemical properties and perform numerous functions vital to all organisms. The molecules derived from amino acids can function as structural components of cells and subcellular entities, as sources of nutrients, as atom- and energy-storage reservoirs, and as functional species such as hormones, enzymes, receptors, and transport molecules.