Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 2 results
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/02%3A_Unit_II-_Bioenergetics_and_Metabolism/14%3A_Principles_of_Metabolic_Regulation/14.04%3A_Concentration_Control_and_Elasticity_Coefficients
    This page aims to educate biochemistry students on key aspects of metabolic control analysis by focusing on two important concepts: the concentration control coefficient and the elasticity coefficient...This page aims to educate biochemistry students on key aspects of metabolic control analysis by focusing on two important concepts: the concentration control coefficient and the elasticity coefficient. It covers the definitions and significance of these coefficients, providing insights into how enzyme activity affects metabolite concentrations and reaction rates.
  • https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/02%3A_Unit_II-_Bioenergetics_and_Metabolism/14%3A_Principles_of_Metabolic_Regulation/14.5%3A_Metabolism_and_Signaling%3A__The_Steady_State_Adaptation_and_Homeostasis
    The page covers key biochemistry concepts, specifically focusing on enzyme kinetics, metabolic pathways, and homeostasis. It introduces hyperbolic and sigmoidal binding interactions, their implication...The page covers key biochemistry concepts, specifically focusing on enzyme kinetics, metabolic pathways, and homeostasis. It introduces hyperbolic and sigmoidal binding interactions, their implication on metabolic control, and the role of enzyme kinetics in maintaining cellular homeostasis. It also discusses adaptive motifs in metabolic regulation, including feedback systems and their contribution to metabolic stability.

Support Center

How can we help?