Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 13 results
  • https://bio.libretexts.org/Courses/Manchester_Community_College_(MCC)/Remix_of_Openstax%3AMicrobiology_by_Parker_Schneegurt_et_al/11%3A_Control_of_Microbial_Growth/11.05%3A_Drug_Targets_on_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.03%3A_Inhibitors_of_Cell_Wall_Biosynthesis
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.04%3A_Inhibitors_of_Protein_Synthesis
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Mansfield_University_of_Pennsylvania/BSC_3271%3A_Microbiology_for_Health_Sciences_Sp21_(Kagle)/09%3A_Antimicrobial_Drugs/9.03%3A_Antibiotics
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/14%3A_Antimicrobial_Drugs/14.03%3A_Drugs_Targeting_Other_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Folsom_Lake_College/BIOL_440%3A_General_Microbiology_(Panoutsopoulos)/05%3A_Interactions_between_Microbes_and_Humans_and_Antimicrobial_Treatment/5.03%3A_Antimicrobial_Drugs/5.3.03%3A_Drugs_Targeting_Other_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_OER_-_Ying_Liu/15%3A_Antibiotics/15.05%3A_Other_Antibiotics
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/17%3A_Antimicrobial_Drugs/17.3%3A_Antibacterial_Drugs
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/New_England_College/Microbiology_with_NEC/10%3A_Control_of_Microbial_Growth/10.05%3A_Drug_Targets_on_Prokaryote_Microorganisms
    Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopept...Antibacterial compounds exhibit selective toxicity, largely due to differences between prokaryotic and eukaryotic cell structure. Cell wall synthesis inhibitors, including the β-lactams, the glycopeptides, and bacitracin, interfere with peptidoglycan synthesis, making bacterial cells more prone to osmotic lysis. There are a variety of broad-spectrum, bacterial protein synthesis inhibitors that selectively target the prokaryotic 70S ribosome, including those that bind to the 30S and 50S subunits.
  • https://bio.libretexts.org/Courses/Northwest_University/MKBN211%3A_Introductory_Microbiology_(Bezuidenhout)/06%3A_Culturing_Microorganisms/6.13%3A_6._13-_Mechanisms_of_Microbial_Control/6.13.01%3A_Alteration_of_Membrane_Permeability
    As a phospholipid bilayer, the lipid portion of the outer membrane is impermeable to charged molecules. Although, porin channels are present in the outer membrane that allow for passive transport, acr...As a phospholipid bilayer, the lipid portion of the outer membrane is impermeable to charged molecules. Although, porin channels are present in the outer membrane that allow for passive transport, across the outer membrane, of many ions, sugars, and amino acids. These molecules are present in the periplasm, the region between the cytoplasmic and outer membranes. The periplasm contains the peptidoglycan layer and also many proteins responsible for substrate and reception of extracellular signals.
  • https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Boundless)/06%3A_Culturing_Microorganisms/6.13%3A_Mechanisms_of_Microbial_Control/6.13A%3A_Alteration_of_Membrane_Permeability
    As a phospholipid bilayer, the lipid portion of the outer membrane is impermeable to charged molecules. Although, porin channels are present in the outer membrane that allow for passive transport, acr...As a phospholipid bilayer, the lipid portion of the outer membrane is impermeable to charged molecules. Although, porin channels are present in the outer membrane that allow for passive transport, across the outer membrane, of many ions, sugars, and amino acids. These molecules are present in the periplasm, the region between the cytoplasmic and outer membranes. The periplasm contains the peptidoglycan layer and also many proteins responsible for substrate and reception of extracellular signals.

Support Center

How can we help?