Search
- https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Kaiser)/Unit_1%3A_Introduction_to_Microbiology_and_Prokaryotic_Cell_Anatomy/2%3A_The_Prokaryotic_Cell_-_Bacteria/2.4%3A_Cellular_Components_within_the_Cytoplasm/2.4C%3A_Plasmids_and_TransposonsMany bacteria often contain small nonchromosomal DNA molecules called plasmids. While plasmids are not essential for normal bacterial growth and bacteria may lose or gain them without harm, they can p...Many bacteria often contain small nonchromosomal DNA molecules called plasmids. While plasmids are not essential for normal bacterial growth and bacteria may lose or gain them without harm, they can provide an advantage under certain environmental conditions. Plasmids code for synthesis of a few proteins not coded for by the bacterial chromosome. Transposons (jumping genes) are small pieces of DNA that encode enzymes that enable the transposon to, move from one DNA location to another.
- https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Map%3A_Raven_Biology_12th_Edition/17%3A_Biotechnology/17.03%3A_Creating_Correcting_and_Analyzing_Genetic_Variation/17.3.03%3A_Genome_Editing_(CRISPR)The development of tools that would allow scientists to make specific, targeted changes in the genome has been the Holy Grail of molecular biology. An ingenious new tool that is both simple and effect...The development of tools that would allow scientists to make specific, targeted changes in the genome has been the Holy Grail of molecular biology. An ingenious new tool that is both simple and effective in making precise changes is poised to revolutionize the field, much as PCR did in the 1980s. Known as the CRISPR/Cas9 system, and often abbreviated simply as CRISPR, it is based on a sort of bacterial immune system that allows bacteria to recognize and inactivate viral invaders.
- https://bio.libretexts.org/Courses/University_of_Arkansas_Little_Rock/Genetics_BIOL3300_(Leacock)/Genetics_Textbook/04%3A_Inheritance/4.01%3A_Meiosis/4.1.02%3A_CRISPRIn 2020, Emmanuelle Charpentier from the Max Planck Unit for the Science of Pathogens, Berlin, Germany and Jennifer Doudna from the University of California, Berkeley, USA shared the Nobel Prize in Ch...In 2020, Emmanuelle Charpentier from the Max Planck Unit for the Science of Pathogens, Berlin, Germany and Jennifer Doudna from the University of California, Berkeley, USA shared the Nobel Prize in Chemistry “for the development of a method for genome editing” having characterized the CRISPR system in prokaryotes and shown that it could be used in other genomes as well (https://www.nobelprize.org/prizes/ch...press-release/).
- https://bio.libretexts.org/Courses/Clinton_College/BIO_300%3A_Introduction_to_Genetics_(Neely)/04%3A_Inheritance/4.01%3A_Meiosis/4.1.02%3A_CRISPRIn 2020, Emmanuelle Charpentier from the Max Planck Unit for the Science of Pathogens, Berlin, Germany and Jennifer Doudna from the University of California, Berkeley, USA shared the Nobel Prize in Ch...In 2020, Emmanuelle Charpentier from the Max Planck Unit for the Science of Pathogens, Berlin, Germany and Jennifer Doudna from the University of California, Berkeley, USA shared the Nobel Prize in Chemistry “for the development of a method for genome editing” having characterized the CRISPR system in prokaryotes and shown that it could be used in other genomes as well (https://www.nobelprize.org/prizes/ch...press-release/).
- https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Free_For_All_(Ahern_Rajagopal_and_Tan)/08%3A_Basic_Techniques/8.10%3A_Genome_Editing_(CRISPR)The development of tools that would allow scientists to make specific, targeted changes in the genome has been the Holy Grail of molecular biology. An ingenious new tool that is both simple and effect...The development of tools that would allow scientists to make specific, targeted changes in the genome has been the Holy Grail of molecular biology. An ingenious new tool that is both simple and effective in making precise changes is poised to revolutionize the field, much as PCR did in the 1980s. Known as the CRISPR/Cas9 system, and often abbreviated simply as CRISPR, it is based on a sort of bacterial immune system that allows bacteria to recognize and inactivate viral invaders.
- https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Biology_(Kimball)/05%3A_DNA/5.07%3A_Restriction_EnzymesThis page discusses restriction enzymes, which are bacterial DNA-cutting enzymes that enable precise DNA cleavage, facilitating sequencing and producing uniform fragments for analysis. The development...This page discusses restriction enzymes, which are bacterial DNA-cutting enzymes that enable precise DNA cleavage, facilitating sequencing and producing uniform fragments for analysis. The development of recombinant DNA technology relies on these enzymes and DNA ligase, revolutionizing genetics and biotechnology, particularly in the production of therapeutic proteins like insulin.