9.5: Sustainable Agriculture
- Page ID
- 81363
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)“Sustainable agriculture” was addressed by Congress in the 1990 “Farm Bill”. Under that law, “the term sustainable agriculture means an integrated system of plant and animal production practices having a site-specific application that will, over the long term:
- satisfy human food and fiber needs;
- enhance environmental quality and the natural resource base upon which the agricultural economy depends;
- make the most efficient use of nonrenewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls;
- sustain the economic viability of farm operations; and
- enhance the quality of life for farmers and society as a whole.”
Organic Farming is Good for Farmers, Consumers and the Environment
Organic agriculture is an ecological production management system that promotes and enhances biodiversity, biological cycles and soil biological activity. Organic food is produced by farmers who emphasize the use of renewable resources and the conservation of soil and water to enhance environmental quality for future generations. Organic meat, poultry, eggs, and dairy products come from animals that are given no antibiotics or growth hormones. Organic food is produced without using most conventional pesticides, fertilizers made with synthetic ingredients or sewage sludge, or GMOs.
Organic production, with the corresponding practices to maintain soil fertility and soil health is therefore a more benign alternative to conventional, high-value horticulture. The organic food movement has been endorsed by the UN’s Food and Agricultural Organization, which maintains in a 2007 report that organic farming fights hunger, tackles climate change, and is good for farmers, consumers, and the environment. The strongest benefits of organic agriculture are its use of resources that are independent of fossil fuels, are locally available, incur minimal environmental stresses, and are cost effective.
IPM is a Combination of Common-Sense Practices
Integrated Pest Management (IPM) refers to a mix of farmer-driven, ecologically-based pest control practices that seeks to reduce reliance on synthetic chemical pesticides. It involves (a) managing pests (keeping them below economically damaging levels) rather than seeking to eradicate them; (b) relying, to the extent possible, on non-chemical measures to keep pest populations low; and (c) selecting and applying pesticides, when they have to be used, in a way that minimizes adverse effects on beneficial organisms, humans, and the environment. It is commonly understood that applying an IPM approach does not necessarily mean eliminating pesticide use, although this is often the case because pesticides are often over-used for a variety of reasons.
The IPM approach regards pesticides as mainly short-term corrective measures when more ecologically based control measures are not working adequately (sometimes referred to as using pesticides as the “last resort”). In those cases when pesticides are used, they should be selected and applied in such a manner as to minimize the amount of disruption that they cause to the environment, such as using products that are non-persistent and applying them in the most targeted way possible).
Biological Control
Biological control (biocontrol) is the use of one biological species to reduce populations of a different species. There has been a substantial increase in commercialization of biocontrol products, such as beneficial insects, cultivated predators and natural or non-toxic pest control products. Biocontrol is being mainstreamed to major agricultural commodities, such as cotton, corn and most commonly vegetable crops. Biocontrol is also slowly emerging in vector control in public health and in areas that for a long time mainly focused on chemical vector control in mosquito/malaria—and black fly/onchocerciasis—control programs. Successful and commercialized examples of biocontrol include ladybugs to depress aphid populations, parasitic wasps to reduce moth populations, use of the bacterium Bacillus thuringenensis to kill mosquito and moth larvae, and introduction of fungi, such as Trichoderma, to suppress fungal-caused plant diseases, leaf beetle (Galerucella calmariensis) to suppress purple loosestrife, a noxious weed (Figure \(\PageIndex{1}\)). In all of these cases, the idea is not to completely destroy the pathogen or pest, but rather to reduce the damage below economically significant values.

Intercropping Promotes Plant Interactions
Intercropping means growing two or more crops in close proximity to each other during part or all of their life cycles to promote soil improvement, biodiversity, and pest management. Incorporating intercropping principles into an agricultural operation increases diversity and interaction between plants, arthropods, mammals, birds and microorganisms resulting in a more stable crop-ecosystem and a more efficient use of space, water, sunlight, and nutrients (Figure \(\PageIndex{2}\)). This collaborative type of crop management mimics nature and is subject to fewer pest outbreaks, improved nutrient cycling and crop nutrient uptake, and increased water infiltration and moisture retention. Soil quality, water quality and wildlife habitat all benefit.

Organic Farming Practices Reduce Unnecessary Input Use
In modern agricultural practices, heavy machinery is used to prepare the seedbed for planting, to control weeds, and to harvest the crop. The use of heavy equipment has many advantages in saving time and labor, but can cause compaction of soil and disruption of the natural soil organisms. The problem with soil compaction is that increased soil density limits root penetration depth and may inhibit proper plant growth.
Alternative practices generally encourage minimal tillage or no tillage methods. With proper planning, this can simultaneously limit compaction, protect soil organisms, reduce costs (if performed correctly), promote water infiltration, and help to prevent topsoil erosion (Figure \(\PageIndex{3}\)).

Tillage of fields does help to break up clods that were previously compacted, so best practices may vary at sites with different soil textures and composition. Another aspect of soil tillage is that it may lead to more rapid decomposition of organic matter due to greater soil aeration. Over large areas of farmland, this has the unintended consequence of releasing more carbon and nitrous oxides (greenhouse gases) into the atmosphere, thereby contributing to global warming effects. In no-till farming, carbon can actually become sequestered into the soil. Thus, no-till farming may be advantageous to sustainability issues on the local scale and the global scale. No-till systems of conservation farming have proved a major success in Latin America and are being used in South Asia and Africa.
Urban Farming
Small community gardens, urban farms that span several city blocks, and intensive indoor hydroponic or aquaculture facilities are all examples of urban agriculture. This fast-growing phenomenon has the potential to nourish the health and social fabric of communities while creating economic opportunities for farmers and neighborhoods. However, it also comes with a unique set of challenges (e.g., unique legal and zoning regulations as well as social stigma and lack of education and space) and many opportunities. Urban farmers, federal and city government agencies, and local organizations around the country have developed a variety of tools to help address those challenges and assist the growth of agriculture in cities.
Whether it is a for-profit, a non-profit, a sole proprietorship, a partnership, or a cooperative, urban farms are businesses and need to understand legal issues that could affect the business. On the other hand, small community volunteer gardens may only need to comply with zoning regulations and building support in their community.
Access to land and water is one of the biggest challenges facing new farmers and farmers looking to expand their operations across the country. Land access is particularly challenging in urban areas, where vacant land suitable or access to water sources for farming is often not available. Sometimes appropriate land exists but it may be difficult to transfer to urban growers.
Ensuring healthy soils is not only critically important, but difficult in urban settings, where soil can be contaminated by multiple sources – historical use of coal for heat and cooking, pollution from industrial practices and consumer products such as leaded gasoline and lead-based paint, urban fill in low lying areas, pesticide residues, and illegal dumping. Unfortunately, soil testing may be expensive, and determining what to test for may be confusing for urban farmers. Remediation may be expensive and require coordination and collaboration with environmental regulatory agencies, which requires significant time for urban farmers.
Some cities and counties are developing innovative and creative strategies to connect vacant land and lots with interested farmers. There have also been federal resources available to assist with land procurement and soil remediation, but these are less available with the 2025 DOGE budget cuts.
An urban ag story from USDA's Risk Management Agency about a non-profit in St. Paul, Minnesota that promotes urban gardens, conservation and cooking to the community.
Yemi Amu has dedicated her life as a farmer to solving this problem by starting the only aquaponics farm in NYC. Oko Farms in Brooklyn is both a working farm that provides fresh food to surrounding neighborhoods, while also actively engaging the public in education on how to grow food for in urban environments.
"Buy Local": Farmers Markets and Community Supported Agriculture (CSAs)
Food sold close to where it was grown or produced is considered "locally grown." Buying food from local farmers is believed to be good for communities, the local economy, and the environment. Locally sold produce can be harvested at its peak ripeness, and reaches the consumer faster and at a fresher stage. Buying local reduces energy costs, including climate emissions due to food miles, and supports food that grows well in the regional climate. When consumers buy local, more of their money stays in their community.
Local food can be found at farmers markets, restaurants, CSAs, food co-ops, food hubs, food stores, and online.
Farmers' Markets
Farmers' markets are an integral part of communities, and their food systems, economies, and social networks. They are the oldest way that humans have sold food and other goods to each other, gathering in one place to connect with neighbors, meet local farmers, support local businesses, and provide nutritious food to neighborhoods and families. They also provide a space to learn more about the local area, such as library offerings, musicians, artisans, specialty vendors, and more.
There are many benefits of shopping at farmers’ markets, including:
- Buying fresh, local produce and other farm-based products (e.g., honey, dairy products, meat, etc.) can help improve the nutritional value and variety of a family's diet,
- The money spent at a Farmers Market stays within the local/regional economy, and
- Speaking directly to farmers who can provide information on choosing, using, preparing, and storing the products they sell.
Community Supported Agriculture
Crop Rotation
Crop rotations are planned sequences of crops over time on the same field. Rotating crops provides productivity benefits by improving soil nutrient levels and breaking crop pest cycles. Farmers may also choose to rotate crops in order to reduce their production risk through diversification or to manage scarce resources, such as labor, during planting and harvesting timing. This strategy reduces the pesticide costs by naturally breaking the cycle of weeds, insects and diseases. Also, grass and legumes in a rotation protect water quality by preventing excess nutrients or chemicals from entering water supplies.
AN ALTERNATIVE TO SPRAYING: BOLLWORM CONTROL IN SHANDONG
Farmers in Shandong (China) have been using innovative methods to control bollworm infestation in cotton when this insect became resistant to most pesticides. Among the control measures implemented were:
- The use of pest resistant cultivars and interplanting of cotton with wheat or maize.
- Use of lamps and poplar twigs to trap and kill adults to lessen the number of adults.
- If pesticides were used, they were applied on parts of cotton plant’s stem rather than by spraying the whole field (to protect natural enemies of the bollworm).
These and some additional biological control tools have proved to be effective in controlling insect populations and insect resistance, protecting surroundings and lowering costs.
The Future of the Sustainable Agriculture Concept
Many in the agricultural community have adopted the sense of urgency and direction pointed to by the sustainable agriculture concept. Sustainability has become an integral component of many government, commercial, and non-profit agriculture research efforts, and it is beginning to be woven into agricultural policy. Increasing numbers of farmers and ranchers have embarked on their own paths to sustainability, incorporating integrated and innovative approaches into their own enterprises.
Contributors and Attributions
- Essentials of Environmental Science by Kamala Doršner is licensed under CC BY 4.0. Modified from the original by Matthew R. Fisher.
- USDA Urban Agriculture Toolkit
- California Foundation for Agriculture in the Classroom