Skip to main content
Biology LibreTexts

NpR6012g4

  • Page ID
    4403
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Class: Cyanobacteriochrome

    Family: Canonical Red/Green

    Origin: Nostoc punctiforme

    Chromophore(s): PCB

    NpR6012g4photostaytes.PNG

    Figure 1. Proposed photostates of the red/green CBCR NpR6012g4. (A) As a working model, we follow a recent report30 that suggested that the phycocyanobilin chromophore is protonated in the red-absorbing 15Z Pr state (left) but deprotonated in the green-absorbing 15E Pg state (right; protonated B-ring tautomer shown)

    NpR6012g4abs.jpg

    Absorption spectrum of Npr6012g4 wild type (solid curves) and the beta-Phe mutant (dashed curves) in the 15Z state (red curve) and 15E (green and yellow curves) states.http://larsenlab.ucdavis.edu/@api/deki/files/1584/NpR6012g4.txt

    NpR6012g4table.PNG

    References

    • Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme: 1. Forward Dynamics, Peter W. Kim, Lucy H. Freer, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, and Delmar S. Larsen, Biochemistry, 51, 608−618 (2012). pdf
    • Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme: 2. Reverse Dynamics, Peter W. Kim, Lucy H. Freer, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, and Delmar S. Larsen, Biochemistry, 51, 619−630 (2012). pdf
    • Second-Chance Initiation Dynamics of the Cyanobacterial Photocycle in the NpR6012 GAF4 Domain of Nostoc Punctiforme, Peter W. Kim, Lucy H. Freer, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, and Delmar S. Larsen, Journal of the American Chemical Society, 134 (1), 130–133 (2012). pdf
    • Reactive Ground-State Pathways Are Not Ubiquitous in Red/Green Cyanobacteriochromes, Che-Wei Chang, Sean M. Gottlieb, Peter W. Kim, Nathan C. Rockwell, J. Clark Lagarias, and Delmar S. Larsen, J. Phys. Chem. B, 117 (38), 11229–11238 (2013). pdf
    • Red/Green Cyanobacteriochromes: Sensors of Color and Power Nathan C. Rockwell, Shelley S. Martin, and J. Clark Lagarias* Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States Biochemistry, 2012, 51 (48), pp 9667–9677 DOI: 10.1021/bi3013565 Publication Date (Web): November 14, 2012
    • Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct, Nathan C. Rockwell, Shelley S. Martin, Sunghyuk Lim, J. Clark Lagarias, and James B. Ames, Biochemistry 2015 54 (24), 3772-3783, DOI: 10.1021/acs.biochem.5b00438 PDF
    • Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates, Nathan C. Rockwell, Shelley S. Martin, Sunghyuk Lim, J. Clark Lagarias, and James B. Ames, Biochemistry 2015 54 (16), 2581-2600, DOI: 10.1021/bi501548t PDF
    • Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes, Sean M. Gottlieb, Peter W. Kim, Che-Wei Chang, Samuel J. Hanke, Randeep J. Hayer, Nathan C. Rockwell, Shelley S. Martin, J. Clark Lagarias, Delmar S. Larsen, Biochemistry, 54 (4), pp 1028–1042 (2015). PDF
    • Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts, Nathan C. Rockwell, Shelley S. Martin, Alexander G. Gulevich, and J. Clark Lagarias, Biochemistry 2014 53 (19), 3118-3130, DOI: 10.1021/bi500037a PDF

    • NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning, Nathan C. Rockwell, Shelley S. Martin, Fei Gan, Donald A. Bryant and J. Clark Lagarias, Photochem. Photobiol. Sci., 2015,14, 258-269, DOI: 10.1039/C4PP00336E PDF

    • Correlating Structural and Photochemical Heterogeneity in Cyanobacteriochrome NpR6012g4, Sunghyuk Lim, Qinhong Yu, Sean M. Gottlieb, Che-Wei Chang, Nathan C. Rockwell, Shelley S. Martin, Dorte Madsen, J. Clark Lagarias, Delmar S. Larsen, and James B. Ames, Proceedings of the National Academy of Sciences of the United States of America, 115 (17) 4387-4392 (2018). pdf


    NpR6012g4 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?