Skip to main content
Biology LibreTexts

Buffers and Buffer Problems

  • Page ID
    1325
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Henderson-Hasselbach equation

    General solution when you know the concentrations of conjugate acid and base
    pKa = pH – log ([ A-]/[HA])
    Rearrange:
    pH = pKa + log([A-]/[HA]) = pKa + log ([conjugate base]/[conjugate acid])

    Example

    What pH do you get when to 0.1 M HA, you add 0.02 M NaOH?
    HA ↔ H+ + A-
    0.1-0.02 0.02
    pH = pKa + log [(0.02)/(0.1-0.02)]
    Apply to acetic acid, pKa = 4.76:
    pH = 4.76 - 0.60 = 4.16

    Example

    How much HCl must be added to 0.1 M Tris to give pH 7.8?
    pKa (Tris) = 8.1
    (Tris is tris-hydroxy-amino-methane and generally is the base form, e.g. A-)
    A- + H+ ↔ HA
    0.1-X X
    pH = pKa + log ([ A-]/[HA])
    7.8 = 8.1 + log ([ A-]/[HA])
    log ([ A-]/[HA]) = -0.3
    [ A-]/[HA] = 10-0.3 = 0.5
    [ A-] = 0.5[HA]
    0.1-X = 0.5X
    X = [HA] = 0.1/1.5 = 0.067 M

    Titrations

    Example

    Add NaOH to 0.1 M CH3COOH
    pH = pKa + log([ A-]/[HA])
    when [ A-] ~ [HA], then [ A-]/[HA] ~ 1, and log([ A-]/[HA]) ~ 0 and pH ~ pKa
    Also, log([ A-]/[HA]) is most resistant to changes in HA
    i.e., when pH ~ pKa: buffers!
    So expect most resistance, lowest d(pH)/d(NaOH) at 0.05 M
    [CH3COO-] / [CH3COOH] = 0.05 / (0.1 – 0.05) = 1
    pKa for ammonium = 9.25, imidazole = 6.99, acetate =4.76 (note the shapes are all the same)
    TITRATION CURVE DIAGRAM GOES HERE
    pKa for ammonium = 9.25, imidazole = 6.99, acetate =4.76 (note the shapes are all the same)
    Phosphate dissociation and disproportionation:
    H3PO4 ↔ H2PO4- ↔ HPO4-2 ↔ PO4-3
    pK1 = 2.15 pK2 = 7.2 pK3 = 12.4
    Put H2PO4- into water:
    H2PO4- ↔ Η+ + HPO4-2
    H2PO4- + Η+ ↔ H3PO4
    so [HPO4-2] = [H3PO4
    [pH = pK1 + log[H2PO4-1]/[H3PO4] = pK1 + log[H2PO4-] - log[H3PO4
    [pH = pK2 + log[HPO4-2]/[H2PO4-1] = pK2 + log[HPO4-2] - log[H2PO4-]
    Add equations
    2pH = pK1 + pK2
    pH = ½(pK1 + pK2)

    Contributors


    Buffers and Buffer Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?