Skip to main content
Biology LibreTexts

Formulas Summary

  • Page ID
    134119
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Name

    Formula

    Interpretation

    Fundamental equation of population growth

    \(N_{t+1} = N_t + B_t - D_t + I_t- E_t\)

    \(N_t\) = population size at time t

    B = births; D = deaths; I = immigrants; E = emigrants

    Net reproductive rate - average total number of female offspring per female over the course of her lifetime

    \(R_0 = I_x m_x\)

    increasing pop: \(R_0\) > 1

    stable population: \(R_0\) = 1

    decreasing pop: \(R_0\) < 1

    Generation time

    \(T = x I_x m_x R_0\)

    T = average age of reproduction

    Intrinsic/ per capita growth rate

    \(r = T ln (R_0)\)

    increasing pop: r > 0

    stable population: r = 0

    decreasing pop: r < 0

    Rule of 70 

    \(t = 70 (100r)\)

    t = time (in years) for population size to double

    \(F_x\)

    \(F_x = S_x m_{x + 1}\)

    age-specific fecundity

    \(T_x\)

    \(T_x = x L_x\)

    \(T_x\) = years left to live

    \(E_x\)

    \(E_x = T_x n_x\)

    \(E_x\) = life expectancy

    \(L_x\)

    \(L_x = (n_x + n_x + 1) / 2\)

    \(L_x\) = number surviving

    Geometric population growth - growth rate of population with pulsed (seasonal) reproduction patterns

    \(\lambda = N_{t + 1} / N_t\)

    increasing pop: > 1

    stable population: = 1

    decreasing pop: < 1

    Geometric growth model future population estimation

    \(N_t = N_0 \lambda^t\)

    \(N_t\) = population size at time t

    Exponential population growth - growth by a population with continuous reproduction (rate of population size change over time)

    \(dN/dt = rN\)

    increasing population: r > 0

    stable population: r = 0

    decreasing population: r < 0

    Exponential growth model future population estimation

    \(N_t = N_0 e^{rt} \)

    N = population size at time t

    \((e  \approx 2.71828 )\)

    Logistic population growth - exponential growth limited by carrying capacity

    \(\frac{dN}{dt} = rN \frac{(K-N_{t})}{K}\)

    increasing pop: N < K

    stable population: N = K

    decreasing pop: N > K

    Bioenergetics model

    \(S = IE - (FE + UE) - M\)

    S = energy storage (growth and reproduction)

    Lincoln-Peterson Index (Mark-Recapture Model)

    \(N = \frac{(M * S)}{R}\)

    N = population size estimate

    M = # of animals marked and released

    S = # of animals recaptured

    R = size of sample on 2nd visit

    Leslie Matrix formula

    \(N_{t + 1} = L * N^t\)

    \(N_{t+1}\) = population size at time t

    L = Leslie Matrix

    \(N_t\) = age-specific population at initial start time

    Simpson’s Index of Diversity (measure of probability): the less diversity, the greater the probability that two randomly selected individuals will be the same

    \(D = \sum_{i=1}^{S}\left(\frac{n_{i}}{N}\right)^{2}\)

    \(n_i\) = number of individuals of species i

    N = total number of individuals of all species

    1 - D: if D is closer to zero, then less diversity; if D is closer to 1, then more diversity

    Shannon-Wiener Diversity Index (measure of certainty): more common species, more uncertain which one will be selected

    \(H = -\sum_{i=1}^{S} p_{i} * \ln p_{i}\)

    \(n_i / N = p_i\) = proportion of individuals of species i

    H = 0 in the absence of diversity

    Species richness

    \(H_{\max} = ln(S)\)

    \(H_{max}\) = maximum number of different species H can reach

    S = number of different species

    Species evenness

    \(J = \frac{H}{H_{\max }}\)

    if J is closer to 0, then less evenness; if J is closer to 1, then more evenness

    1. alpha

    2. beta

    3. gamma

    1. average number of species

    2. gamma / alpha

    3. total # of species

    1. diversity within a specific habitat/ecosystem

    2. comparison of diversity within habitats

    3. measure of diversity at landscape level (in several habitats within a region)

    • Was this article helpful?