Skip to main content
Biology LibreTexts

19.4: Sources and Attributions

  • Page ID
    84839
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Contributors and Attributions

    This chapter was compiled and written by N. Gownaris with text taken from the following CC-BY resources: 

     

    Sources 

    Alheit, J., Möllmann, C., Dutz, J., Kornilovs, G., Loewe, P., Mohrholz, V., & Wasmund, N. (2005). Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science, 62(7), pp. 1205–1215. doi:10.1016/j.icesjms.2005.04.024.

    Banasek-Richter, C., Bersier, L.L., Cattin, M., Baltensperger, R., Gabriel, J., Merz, Y., et al. (2009). Complexity in quantitative food webs. Ecology, 90(6), pp. 1470–1477. doi:10.1890/08-2207.1. hdl:1969.1/178777. PMID 19569361.

    Barbosa, P., & Castellanos, I. (Eds.). (2005). Ecology of predator-prey interactions, pp. 306, Oxford University Press.ISBN 9780199883677.

    Baril, L.M. (2009). Change in deciduous woody vegetation, implications of increased willow (Salix spp.) growth for bird species diversity and willow species composition in and around Yellowstone National Park's northern range (MS). Bozeman, USA: Montana State University.

    Benke, A.C. (2010). Secondary production. Nature Education Knowledge, 1(8), pp. 5.

    Beschta, R.L., & Ripple, W.J. (2011). The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology, 157–158, 88–98. doi:10.1016/j.geomorph.2011.04.042.

    Beschta, R.L., & W.J. Ripple. (2009). Large predators and trophic cascades in terrestrial ecosystems of the western. United States Biological Conservation, 142, pp. 2401–2414.

    Beschta, R.L., & Ripple, W.J. (2007). Increased willow heights along northern Yellowstone's Blacktail Deer Creek following wolf reintroduction. Western North American Naturalist, 67(4), pp. 613–617. doi:10.3398/1527-0904(2007)67[613:iwhany]2.0.co;2.

    Carpenter, S.R., Kitchell, J.F., & Hodgson, J.R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35(10), pp. 634–639. doi:10.2307/1309989. JSTOR 1309989.

    Choy, C.A., Portner, E., Iwane, M., & Drazen, J.C. (2013). Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser., 492, pp. 169–184. (doi:10.3354/meps10518)

    Choy, C.A., Haddock, S.H., & Robison, B.H. (2017). Deep pelagic food web structure as revealed by in situ feeding observations. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20172116.

    Cortés, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci., 56(5), pp. 707–717. doi:10.1006/jmsc.1999.0489.

    Cury, P., et al. (2000). Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci., 57, pp. 603–618 (2000).

    Cury, P.M., et al. (2011). Global seabird response to forage fish depletion - one-third for the birds. Science, 334, pp. 1703–1706.

    Cury, P., Shannon, L., & Shin, Y.-J. (2003). In Sinclair, M., & Valdimarsson, G. (Eds.), Responsible fisheries in the marine ecosystem, (pp. 103–123). AO, Rome, & CABI Publishing, Wallingford, UK.

    Definition of Trophic. www.merriam-webster.com. Retrieved 16 April 2017.

    Drazen, J.C., & Sutton, T.T. (2017). Dining in the deep: The feeding ecology of deep-sea fishes. Annu. Rev. Mar. Sci., 9, pp. 337–366. (doi:10.1146/annurev-marine-010816-060543)

    Dunne, J.A., Williams, R.J., Martinez, N.D., Wood, R.A., & Erwin, D.H. (2008). Compilation and Network Analyses of Cambrian Food Webs. PLoS Biol., 6(4): e102. doi:10.1371/journal.pbio.0060102

    Dunne, J.A., Williams, R.J., & Martinez, N.D. (2002). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99(20), pp. 12917–12922. Bibcode:2002PNAS...9912917D. doi:10.1073/pnas.192407699. PMC 130560. PMID 12235364.

    Dunne, J.A., Williams, R.J., Martinez, N.D., Wood, R.A., Erwin, D.H., & Dobson, Andrew P. (2008). Compilation and network analyses of cambrian food webs. PLOS Biology, 6(4): e102. doi:10.1371/journal.pbio.0060102. PMC 2689700. PMID 18447582.

    Eisenberg, C. (2011). The wolf's tooth: Keystone predators, trophic cascades, and biodiversity. pp. 15. Island Press. ISBN 978-1-59726-398-6.

    Estes, J.A., & Palmisano, J.F. (1974). Sea otters: Their role in structuring nearshore communities. Science, 185(4156), pp. 1058–1060. doi:10.1126/science.185.4156.1058. PMID 17738247. S2CID 35892592.

    Estes, J.A., et al. (2011). Trophic Downgrading of Planet Earth. Science, 333(6040), pp. 301–306. CiteSeerX 10.1.1.701.8043. doi:10.1126/science.1205106. PMID 21764740. S2CID 7752940.

    Frank, K.T.; Petrie, B., Choi, J.S., & Leggett, W.C. (2005). Trophic cascades in a formerly cod-dominated ecosystem. Science, 308(5728), pp. 1621–1623. doi:10.1126/science.1113075. ISSN 0036-8075. PMID 15947186. S2CID 45088691.

    Getz, W. (2011). Biomass transformation webs provide a unified approach to consumer–resource modelling. Ecology Letters, 14(2), pp. 113–124. doi:10.1111/j.1461-0248.2010.01566.x. PMC 3032891. PMID 21199247.

    Santos, G.N., Danac, A.C., & Ocampo, J.P. (2003). E-biology ii. Rex Book Store. p. 58. ISBN 978-971-23-3563-1.

    Gönenç, I.E., Koutitonsky, V.G., & Rashleigh, B. (2007). Assessment of the fate and effects of toxic agents on water resources. Springer. p. 279. ISBN 978-1-4020-5527-0.

    Gownaris, N.J., Pikitch, E.K., Ojwang, W.O., Michener, R., & Kaufman, L. (2015). Predicting species’ vulnerability in a massively perturbed system: The fishes of Lake Turkana, Kenya. PloS one, 10(5), e0127027.

    Groombridge, B., & Jenkins, M. (2002). World atlas of biodiversity: Earth's living resources in the 21st century. World Conservation Monitoring Centre, United Nations Environment Programme. ISBN 978-0-520-23668-4.

    Groshong, L.C. (2004). Mapping riparian vegetation change in Yellowstone's Northern Range using high spatial resolution imagery (MA Thesis). Eugene, Oregon, USA: University of Oregon.

    Hutchinson, J. (2013). Tyrannosaurus rex: Predator or media hype? What's in John's Freezer? Retrieved August 26, 2013.

    Hyslop E.J. (1980). Stomach contents analysis: A review of methods and their application. J. Fish Biol., 17, pp. 411–429. (doi:10.1111/j.1095-8649.1980.tb02775.x)

    Kane; et al. (2016). Body size as a driver of scavenging in theropod dinosaurs. The American Naturalist, 187(6), pp. 706–16. doi:10.1086/686094. hdl:10023/10617. PMID 27172591. S2CID 3840870.

    Keddy, P. (2017). Plant ecology, origins, processes, consequences (2nd Ed.). New York: Cambridge University Press. pp. 92–93. ISBN 978-1-107-11423-4.

    Kent, M. (2000). Advanced biology. Oxford University Press US. p. 511. ISBN 978-0-19-914195-1.

    Kotta, J., Wernberg, T., Jänes, H., Kotta, I., Nurkse, K., Pärnoja, M., & Orav-Kotta, H. (2018). Novel crab predator causes marine ecosystem regime shift. Scientific Reports, 8(1), pp. 4956. doi:10.1038/s41598-018-23282-w. PMC 5897427. PMID 29651152.

    Letnic, M .,& Dworjanyn, S.A. (2011). Does a top predator reduce the predatory impact of an invasive mesopredator on an endangered rodent? Ecography, 34(5), pp. 827–835. doi:10.1111/j.1600-0587.2010.06516.x.

    Letourneau, D.K., & Dyer, L.A. (1998). Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology, 79(5), pp. 1678–1687. doi:10.2307/176787. JSTOR 176787.

    Leveque, C., ed. (2003). Ecology: From ecosystem to biosphere. Science Publishers. p. 490. ISBN 978-1-57808-294-0.

    Loh, T.L., et al. (2015). Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ. 3: e901. doi:10.7717/peerj.901. PMC 4419544. PMID 25945305.

    Loh, T.L., & Pawlik, J.R. (2014). Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proceedings of the National Academy of Sciences, 111(11), pp. 4151–4156. doi:10.1073/pnas.1321626111. ISSN 0027-8424. PMC 3964098. PMID 24567392.

    Madigan, D.J., Carlisle, A.B., Dewar, H., Snodgrass, O.E., Litvin, S.Y., Micheli, F., & Block, B.A. (2012). Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Scientific reports, 2(1), pp. 1-10.

    Megrey, B., & Werner, F. Evaluating the role of topdown vs. bottom-up ecosystem regulation from a modeling perspective.

    Mollmann, C., Muller-Karulis, B., Kornilovs, G., & St. John, M.A. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: Regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), pp. 302–310. doi:10.1093/icesjms/fsm197.

    Mostajir, B., Amblard, C., Buffan-Dubau, E., De Wit, R., Lensi, R., & Sime-Ngando, T. (2015). Microbial food webs in aquatic and terrestrial ecosystems. In Bertrand, J.C., Caumette, P., Lebaron, P., Matheron, R., Normand, P., & Sime-Ngando, T. (Eds.), Environmental Microbiology: Fundamentals and Applications, (pp. 485-510). Microbial Ecology, Springer. ISBN 9789401791182.

    Murdoch, W.M. (1966). Community structure, population control, and competition – a critique. The American Naturalist, 100(912), pp. 219–226. doi:10.1086/282415. S2CID 84354616.

    Neutel, A., Heesterbeek, J.A.P., & de Ruiter, P.D. (2002). Stability in real food webs: Weak link in long loops. Science, 295(550), pp. 1120–1123. Bibcode:2002Sci...296.1120N. doi:10.1126/science.1068326. hdl:1874/8123. PMID 12004131. S2CID 34331654. Archived from the original (PDF) on 2011-09-28.

    NOAA. ACE Basin National Estuarine Research Reserve: Decomposers. Archived from the original on 2014-10-09. Retrieved 2012-09-17.

    Odum, E.P., & Barrett, G.W. (2005). Fundamentals of ecology (5th ed.). Brooks/Cole, a part of Cengage Learning. ISBN 978-0-534-42066-6. Archived from the original on 2011-08-20.

    Odum, W.E., & Heald, E.J. (1975). The detritus-based food web of an estuarine mangrove community. Pages 265–286 In Cronin, L.E. (Eds.), Estuarine research (pp. 265-286). Academic Press, New York.

    Ogada, D.L., Keesing, F., & Virani, M.Z. (2011). Dropping dead: Causes and consequences of vulture population declines worldwide. Annals of the New York Academy of Sciences, 1249(1), pp. 57–71. Bibcode:2012NYASA1249...57O. doi:10.1111/j.1749-6632.2011.06293.x. ISSN 0077-8923. PMID 22175274. S2CID 23734331.

    Olson, Z.H., Beasley, J.C., & Rhodes, O.E. (2016). Carcass type affects local scavenger guilds more than habitat connectivity. PLOS ONE, 11(2): e0147798. Bibcode:2016PLoSO..1147798O. doi:10.1371/journal.pone.0147798. ISSN 1932-6203. PMC 4757541. PMID 26886299.

    Pahl and Ruedas (2021). Carnosaurs as apex scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs. Ecological Modelling, 458. doi:10.1016/j.ecolmodel.2021.109706e.

    Paine, R.T. (1988). Road maps of interactions or grist for theoretical development? Ecology, 69(6), pp. 1648–1654. doi:10.2307/1941141. JSTOR 1941141. Archived from the original (PDF) on 2011-07-28.

    Painter, L.E., & Ripple, W.J. (2012). Effects of bison on willow and cottonwood in northern Yellowstone National Park. Forest Ecology and Management, 264, pp. 150–158. doi:10.1016/j.foreco.2011.10.010.

    Pauly, D., & Palomares, M.L. (2005). Fishing down marine food webs: It is far more pervasive than we thought. Bulletin of Marine Science, 76(2), pp. 197–211. Archived from the original (PDF) on 14 May 2013.

    Pauly, D., Trites, A., Capuli, E., & Christensen, V. (1998). Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci., 55(3), pp. 467–481. doi:10.1006/jmsc.1997.0280.

    Pimm, S.L. (1979). The structure of food webs. Theoretical Population Biology, 16(2), pp. 144–158. doi:10.1016/0040-5809(79)90010-8. PMID 538731. Archived from the original (PDF) on 2011-09-27.

    Pimm, S.L., Lawton, J.H., & Cohen, J.E. (1991). Food web patterns and their consequences. Nature, 350(6320), pp. 669–674. Bibcode:1991Natur.350..669P. doi:10.1038/350669a0. S2CID 4267587. Archived from the original (PDF) on 2010-06-10.

    Polis, G.A., Sears, A.L, W., Huxel, G.R., et al. (2000). When is a trophic cascade a trophic cascade? Trends in Ecology & Evolution, 15(11), pp. 473–475. doi:10.1016/s0169-5347(00)01971-6. PMID 11050351.

    Polis, G.A., & Strong, D.R. (1996). Food web complexity and community dynamics. The American Naturalist, 147(5), pp. 813–846. doi:10.1086/285880. S2CID 85155900.

    Post, D.M. (1993). The long and short of food-chain length. Trends in Ecology and Evolution, 17(6), pp. 269–277. doi:10.1016/S0169-5347(02)02455-2.

    Power, M.E. (1990). Effects of fish in river food webs. Science, 250(4982), pp. 811–814. doi:10.1126/science.250.4982.811. PMID 17759974. S2CID 24780727.

    Preisser, E.L. (2003). Field evidence for a rapidly cascading underground food web. Ecology, 84(4). pp. 869–874. doi:10.1890/0012-9658(2003)084[0869:fefarc]2.0.co;2.

    Proctor, J.D., & Larson, B.M.H. (2005). Ecology, complexity, and metaphor. BioScience, 55(12), pp. 1065–1068. doi:10.1641/0006-3568(2005)055[1065:ECAM]2.0.CO;2.

    Proulx, S.R., Promislow, D.E.L., & Phillips, P.C. (2005). Network thinking in ecology and evolution. Trends in Ecology and Evolution, 20(6), 345–353. doi:10.1016/j.tree.2005.04.004. PMID 16701391. Archived from the original (PDF) on 2011-08-15.

    Prugh, L.R., et al. (2009). The Rise of the Mesopredator. BioScience, 59(9), pp. 779–791. doi:10.1525/bio.2009.59.9.9. S2CID 40484905.

    Raffaelli, D. (2002). From Elton to mathematics and back again. Science, 296(5570), pp. 1035–1037. doi:10.1126/science.1072080. PMID 12004106. S2CID 177263265.

    Rickleffs, R.E. (1996). The economy of nature. University of Chicago Press. p. 678. ISBN 978-0-7167-3847-3.

    Ripple, W.J., & Beschta, R.L. (2012). Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction. Biological Conservation, 145, pp. 205–213. doi:10.1016/j.biocon.2011.11.005.

    Ripple, W.J., & Beschta, R.L. (2004). Wolves, elk, willows, and trophic cascades in the upper Gallatin Range of Southwestern Montana, USA. Forest Ecology and Management, 200(1–3), pp. 161–181. doi:10.1016/j.foreco.2004.06.017.

    Ripple, W.J., & Beschta, R.L. (2006). Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation, 133(4), pp. 397–408. doi:10.1016/j.biocon.2006.07.002.

    Ripple, W.J., & Beschta, R.L. (2008). Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biological Conservation, 141(5), pp. 1249–1256. doi:10.1016/j.biocon.2008.02.028.

    Robison, B.H. (2004). Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, pp. 253–272. (doi:10.1016/j.jembe.2004.01.012)

    Sagi, N., Grünzweig, J.M.,&  Hawlena, D. (2019). Burrowing detritivores regulate nutrient cycling in a desert ecosystem. Proceedings Biological Sciences, 286(1914): 20191647. doi:10.1098/rspb.2019.1647. PMC 6842856. PMID 31662076.

    Science of Earth Systems. Cengage Learning. 2002. p. 537. ISBN 978-0-7668-3391-3.

    Shannon, L.J., Cury, P.M. & Jarre, A. (2000). Modelling effects of fishing in the Southern Benguela ecosystem. ICES J. Mar. Sci., pp. 720–72221934 .

    Shurin, J.B., Borer, E.T., Seabloom, E.W. Anderson, K., Blanchette, C.A., Broitman, B, Cooper, S.D., & Halpern, B.S. (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5(6), pp. 785–791. doi:10.1046/j.1461-0248.2002.00381.x.

    Spellman, F.R. (2008). The science of water: Concepts and applications. CRC Press. p. 165. ISBN 978-1-4200-5544-3.

    Strong, D.R., Whipple, A.V., Child, A.L., & Dennis, B. (1999). Model selection for a subterranean trophic cascade: Root-feeding caterpillars and entomopathogenic nematodes. Ecology, 80(8), pp. 2750–2761. doi:10.2307/177255. JSTOR 177255.

    Sustainable Humans. 2014. "How Wolves Change Rivers"

    Szpak, P., Orchard, T.J., Salomon, A.K., & Gröcke, D.R. (2013). Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii (British Columbia, Canada): Evidence from stable isotope analysis of rockfish (Sebastes spp.) bone collagen. Archaeological and Anthropological Sciences. doi:10.1007/s12520-013-0122-y. S2CID 84866250.

    Tan, C.K.W., & Corlett, R.T. (2011). Scavenging of dead invertebrates along an urbanisation gradient in Singapore. Insect Conservation and Diversity, 5(2), pp. 138–145. doi:10.1111/j.1752-4598.2011.00143.x. ISSN 1752-458X. S2CID 86467187.

    van Dover, C. (2000). The ecology of deep-sea hydrothermal vents. Princeton University Press. p. 399. ISBN 978-0-691-04929-8.

    Wang, H., Morrison, W., Singh, A., & Weiss, H. (2009). Modeling inverted biomass pyramids and refuges in ecosystems. Ecological Modelling, 220(11), pp. 1376–1382. doi:10.1016/j.ecolmodel.2009.03.005. Archived from the original (PDF) on 2011-10-07.

    Wetzel, R.G. (2001). Limnology: Lake and river ecosystems (3rd. ed.). Academic Press. p. 700. ISBN 978-0-12-744760-5.

    Whitman, W.B., Coleman, D.C., & Wieb, W.J. (1998). Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA., 95(12), pp. 6578–83. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454.

    Williams, R.J., Berlow, E.L., Dunne, J.A., Barabási, A., & Martinez, N.D. (2002). Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences, 99(20), pp. 12913–12916. Bibcode:2002PNAS...9912913W. doi:10.1073/pnas.192448799. PMC 130559. PMID 12235367.

    Wilmers, C.C., Estes, J.A., Edwards, M., Laidre, K.L., & Konar, B. (2012). Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Frontiers in Ecology and the Environment, 10(8), pp. 409–415. doi:10.1890/110176. ISSN 1540-9309. S2CID 51684842.

    Wilmers, C.C., Crabtree, R.L., Smith, D.W., Murphy, K.M., & Getz, W.M. (2003). Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology, 72(6), pp. 909–916. doi:10.1046/j.1365-2656.2003.00766.x.

    Zhang, J., Qian, H., Girardello, M., Pellissier, V., Nielsen, S.E., & Svenning, J.C. (2018). Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 285(1883): 20180949. doi:10.1098/rspb.2018.0949. PMC 6083253. PMID 30051871.


    19.4: Sources and Attributions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?