Skip to main content
Biology LibreTexts

15.7: What Have We Learned, Bibliography

  • Page ID
    41007
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    To summarize, in this chapter we have seen that:

    • In clustering, we identify structure in unlabeled data. For example, we might use clustering to identify groups of genes that display similar expression profiles.
      • – Partitioning clustering algorithms, construct non-overlapping clusters such that each item is assigned to exactly one cluster. Example: k-means
      • – Agglomerative clustering algorithms construct a hierarchical set of nested clusters, indicating the relatedness between clusters. Example: hierarchical clustering
      • – By using clustering algorithms, we can reveal hidden structure of a gene expression matrix, which gives us valuable clues for understanding the mechanism of complicated diseases and categorizing different diseases
    • In classification, we partition data into known labels. For example, we might construct a classifier to partition a set of tumor samples into those likely to respond to a given drug and those unlikely to respond to a given drug based on their gene expression profiles. We will focus on classification in the next chapter.

    Bibliography

    [1] en.Wikipedia.org/wiki/File:Heatmap.png.

    [2] http://genome.ucsc.edu/ENCODE/.

    [3] J.Z. Huang, M.K. Ng, Hongqiang Rong, and Zichen Li. Automated variable weighting in k-means type clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(5):657 –668, may 2005.

    [4] Christopher A. Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-Sundaram, Bo Han, Xiao- jun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy, and Arul M. Chinnaiyan. Transcriptome sequencing to detect gene fusions in cancer. Nature, 458(7234):97–101, Mar 05 2009.


    This page titled 15.7: What Have We Learned, Bibliography is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Manolis Kellis et al. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.