Skip to main content
Biology LibreTexts

16: Write It Up!

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A guide to lab reports

    The goal of our class this semester has been to determine if S. pombe orthologs of the S. cerevisiae MET genes are able to complement deficiencies in S. cerevisiae met strains. Throughout the semester, you will be collecting data and reporting that data in 5 micro-reports. At the end of the semester, the data will be compiled into a final report and a poster. The final report should be written in the form of a scientific publication, following the format of a FEMS Yeast Researchpaper. This chapter contains general and specific guidelines for preparing microreports, the final report and the poster.

    The focus of each micro-report is a figure, sometimes accompanied by a table, with the experimental data. The micro-reports are scheduled so that you will receive feedback on your presentation and interpretation of the data, as well as your scientific writing, throughout the semester. You can expect to see improvement as the semester progresses. The experiments in the five micro-reports are listed below in chronological order. Figures and tables are prepared by the team. Before each microreport is due, teams will post their figure to the class data sharing site and present their figure to the class for discussion and feedback.

    1. Identification of met deletion strains by their growth phenotypes on defined media containing various sulfur sources
    2. Genotype analysis of met deletion strains by yeast colony PCR
    3. Identification of yeast overexpression plasmids by restriction mapping
    4. Transformation of met deletion strains with plasmids and complementation analysis of the transformed strains
    5. Analysis of Met protein overexpression in transformed met deletion strains by SDS-PAGE and western blotting of cell extracts

    Before proceeding, consider some general tips for good scientific writing:

    • Good scientific writing is CONCISE! A rambling report quickly bores the reader and weak- ens the message of the report. Observe all page limits. Abbreviations are often helpful. With the exception of standard abbreviations, e.g. length and degrees, spell out the abbreviated term the first time that you use it and follow the term with the abbreviation in parentheses.
    • Good scientific writing is PRECISE! Use the correct conventions for strains, genes and proteins. This class introduces you to a large number of scientific terms, which are defined in the glossary section. Use of the correct term can often prevent the need for extra words.
    • Good scientific writing is EFFECTIVE! The same skills that produce a great essay on Henry Thoreau’s Walden are relevant here! Use the active voice when possible. Writing should be smooth, not choppy. Avoid run-on sentences and be sure that antecedents are clear.
    • Use sub-headings to divide the text into logical segments.


    This page titled 16: Write It Up! is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Clare M. O’Connor.

    • Was this article helpful?