Energy Story#
- Page ID
- 8172
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Energy Story
Overview of the Energy Story
Whether we know it or not, we tell stories that involve matter and energy everyday, we just don’t often use terminology associated with scientific discussions of matter and energy.
Example 1
The setup: a simple statement with implicit details
You tell your roommate a story about how you got to campus by saying, "I biked to campus today". In this simple statement are several assumptions that are instructive to unpack, even if they may not seem very critical to include explicitly in a casual conversation between friends over transportation choices.
An outsider's reinterpretation of the process
To illustrate this, imagine an external observer, for instance an alien being watching the comings and goings of humans on earth. Without the benefit of knowing much of the implied meanings and reasonable assumptions that are buried in our language, the alien's description of the morning cycling trip would be quite different than your own. What you described efficiently as "biking to campus" might be more specifically described by the alien as a change in location of a human body and its bicycle from one location (the apartment, termed position A) to a different location (the university, termed position B). The alien might be even more abstract and describe the bike trip as the movement of matter (the human body and its bike) between an initial state (at location A) to a final state (at location B). Furthermore, from the alien's standpoint what you'd call "biking" might be more specifically described as the use of a two-wheeled tool that couples the transfer of energy from the electric fields in chemical compounds to the acceleration of the two-wheeled tool-person combo and heat in its environment. Finally, buried within the simple statement describing how we got to work is also the tacit understanding that the mass of the body and bike were conserved in the process (with some important caveats we’ll look at in future lectures) and that some energy was converted to enable the movement of the body from position A to position B.
Note: Possible discussion:
Details are important. What if you owned a fully electric bike and the person you were talking with didn’t know that? What important details might this change about the “everyday” story you told that the more detailed description would have cleared up? How would the alien’s story have changed? In what scenarios might these changes be relevant?
As this simple story illustrates, irrespective of many factors, the act of creating a full description of a process includes some accounting of what happened to the matter, what happened to the energy and almost always some description of a mechanism that describes how changes in matter and energy of a system were brought about.
To practice this skill, in BIS2A we will make use of something we like to call "The Energy Story". You may be asked to tell an "energy story" in class, to practice telling energy stories on your lecture study guides, and to use the concept on your exams. In this section, we focus primarily on introducing the concept of an energy story and explaining how to tell one. It is worth noting that the term "energy story" is used almost exclusively in BIS2A (and has a specific meaning in this class). This precise term will not appear in other courses at UC Davis (at least in the short term) or if it appears, is not likely be used in the same manner. You can think of “The Energy Story” as a systematic approach creating a statement or story describing a biological process or event. Your BIS2A instructors have given this approach a short name "energy story," so that we can all associate it with the common exercise. That way when the instructor asks the class to tell or construct an energy story everyone knows what is meant.
Definition 1: Energy Story
An energy story is a narrative describing a process or event. The critical elements of this narrative are:
- Identifying at least two states (e.g. start and end) in the process.
- Identifying and listing the matter in the system and its state at the start and end of the process.
- Describing the transformation of the matter that occurs during the process.
- Accounting for the “location” of energy in the system at the start and end of the process.
- Describing the transfer of energy that happens during the process.
- Identifying and describing mechanism(s) responsible for mediating the transformation of matter and transfer of energy.
A complete energy story will include a description of the initial reactants and their energetic states as well as a description of the final products and their energetic states after the process or reaction is completed.
Note: Possible discussion:
We argue that the energy story can be used to communicate all of the useful details that are required to describe nearly any process. Can you think of a process that cannot be adequately described by an energy story? If so, describe such a process.
Example 2: Energy Story Example
Let us suppose that we are talking about the process of driving a car from "Point A" to "Point B" (see the figure).
Figure 1: A schematic of a car moving at the start from position "Point A" to position "Point B" at the end. The blue rectangle depicted in the back of the car represents the level of gasoline, the purple squiggly line near the exhaust pipe represents the exhaust, squiggly blue lines on top of the car represent sound vibrations and the red shading represents areas that are hotter that at the start.
Source: Created by Marc T. Facciotti (Own work) A Car Moves from Point A to Point B
Let's step through the Energy Story rubric:
1. Identifying at least two states (e.g. start and end) in the process.
In this example we can easily identify two states. The first state is the non-moving car at "Point A", the start of the trip. The second state, after the process is done, is the non-moving car at "Point B".
2. Identifying and listing the matter in the system and its state at the start and end of the process.
In this case we first note that the "system" includes everything in the figure - the car, the road, the air around the car etc.
It is important to understand the we are going to apply the physical law of conservation of matter. That is, in any of the processes that we will discuss, matter is neither created or destroyed. It might change form, but one should be able to account for everything at the end of a process that was there at the beginning.
At the beginning of the process, the matter in the system consists of:
1. The car and all the stuff in it
2. The fuel in the car (a special thing in the car)
3. The air (including oxygen) around the car.
4. The road
5. The driver
At the end of the process, the matter in the system is distributed as follows:
1. The car and all the stuff in it is in a new place (lets assume, aside from the fuel and position, that nothing else changed)
2. There is less fuel in the car and it too is in a new place
3. The air has changed - it now has less molecular oxygen, more carbon dioxide and more water vapor.
4. The road (let's assume it didn't change - other than a few pebbles moved around)
5. The driver (let's assume she didn't change - though we'll see by the end of the term that she did (at least a little). But, the driver is now in a different place.
3. Describing the transformation of the matter that occurs during the process.
What happened to the matter in this process? Thanks to a lot of simplifying assumptions, we see that two big things happened. First, the car and its driver changed positions - they went from "Point A" to "Point B". Second, we note that some of the molecules in the fuel, which used to be in the car as a liquid have changed forms and are now mostly in the form of carbon dioxide and water vapor (purple blob coming out the tailpipe). Some of the oxygen molecules that used to be in the air are now also in a new place as part of the carbon dioxide and water that left the car.
4. Accounting for the “location” of energy in the system at the start and end of the process.
It is again important to understand that we are going to invoke the physical law of conservation of energy. That is, we stipulate that the energy in the system cannot be created or destroyed and therefore the energy that is in the system at the start of the process must still be there at the end of the process. It may have been redistributed but you should be able to account for all the energy.
At the beginning of the process, the energy in the system is distributed as follows:
1. The energy tied up in the associations between atoms that make up the matter of the car.
2. The energy tied up in the associations between atoms that make up the fuel.
3. The energy tied up in the associations between atoms that make up the air.
4. The energy tied up in the associations between atoms that make up the road.
5. The energy tied up in the associations between atoms that make up the driver.
6. For all things above we can also say that there is energy in the molecular motions of the atoms that make up the stuff.
At the end of the process, the energy in the system is distributed as follows:
1. The energy tied up in the associations between atoms that make up the matter of the car.
2. The energy tied up in the associations between atoms that make up the fuel.
3. The energy tied up in the associations between atoms that make up the air.
4. The energy tied up in the associations between atoms that make up the road.
5. The energy tied up in the associations between atoms that make up the driver.
6. For all things above we can also say that there is energy in the molecular motions of the atoms that make up the stuff.
This is interesting in some sense because the lists are about the same. We know that the amount of energy stored in the car has decreased because there is less fuel. Something must have happened.
5. Describing the transfer of energy that happens during the process.
In the particular example it is the transfer of energy about the components of the system that is most interesting. As we mentioned, there is less energy stored in the gas tank of the car at the end of the trip because there is now less fuel. We also know intuitively (from our real life experience) that the transfer of energy from the fuel to something else was instrumental in moving the car from "Point A" to "Point B". So, where did this energy go? Remember, it didn't just disappear. It must have moved somewhere else in the system.
Well we know that there is more carbon dioxide and water vapor in the system after the process. There is energy in the associations between those atoms (atoms that used to be in the fuel and air). So some of the energy that was in the fuel is now in the exhaust. Let's also draw from our real life experience again and state that we know that parts of our car have gotten hot by the end of the trip (e.g. the engine, transmission, wheels/tires, exhaust etc.). For the moment we'll just tap our intuition and say that we understand that making something hot involves some transfer of energy. So we can reasonably postulate that some of the energy in the fuel went (directly or indirectly) into heating the car, parts of the road, the exhaust and thus the environment around the car. An amount of energy also went into accelerating the car from zero velocity to whatever speed it traveled, but most of that eventually went into heat when the car came to a stop.
This is a bit hand wavy of an explanation and we'll learn how to do a better job throughout the quarter. The main point is that we should be able to add all the energy at of the system at the beginning of the process (in all the places it is found) and at the end of the process (in all the places it is found) and those two values should be the same.
6. Identifying and describing mechanism(s) responsible for mediating the transformation of matter and transfer of energy.
Finally, it is useful to try understanding how those transformations of matter and transfers of energy might have been facilitated. For the sake of brevity, in this example we might just say that there was a complicated mechanical device (the engine) that helped facilitate the conversion of matter and transfer of energy about the system and coupled this to the change in position of the car. Someone interested in engines would, of course, give a more detailed explanation.
In this example we made a bunch of simplifying assumptions to highlight the process and to focus on the transformation of the fuel. But that's fine. The more you understand about the processes the finer details you can add. Note that you can use the Energy Story rubric for describing your understanding (or looking for holes in your understanding) of nearly any process (certainly in biology). In BIS2A we'll use the Energy Story to get an understanding of processes as varied as biochemical reactions, DNA replication, the function of molecular motors, etc.
Important:
First: We will be working many examples of the energy story throughout the course - do not feel that you need to have mastery over this topic today.
Second: Nevertheless, while it is tempting to think all this is superfluous or not germane to your study of biology in BIS2a, let this serve as a reminder that your instructors (those creating the course midterm and final assessments) view it as core material. We will revisit this topic often throughout the course but need you to get familiar with some of the basic concepts now.
This is important material and an important skill to develop - do not put off studying it because it doesn't "look" like "biology" to you today. The academic term moves VERY quickly and it will be difficult to catch up later if you don't give this some thought now.