Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Biology LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed NoteBene
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • Annotation System
    • Number of Print Columns
    • PrintOptions
    • Print CSS
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 9 results
  • https://bio.libretexts.org/Courses/New_England_College/Microbiology_with_NEC/05%3A_Mechanisms_of_Microbial_Genetics/5.07%3A_Gene_Regulation_and_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/09%3A_Mechanisms_of_Microbial_Genetics/9.7%3A_Gene_Regulation%3A_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/Prince_Georges_Community_College/PGCC_Microbiology/09%3A_Microbial_Genetics/9.06%3A_Gene_Regulation_-_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/Sacramento_City_College/BIOL_440%3A_General_Microbiology_(Hughes)/08%3A_Week_8/13%3A_Mechanisms_of_Microbial_Genetics_(Part_B)/13.03%3A_Gene_Regulation_-_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/North_Central_State_College/BIOL_1550%3A_Microbiology_(2025)/14%3A_Horizontal_Gene_Transfer_and_Operons/14.03%3A_Gene_Regulation_-_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_(Liu_et_al.)/13%3A_Horizontal_Gene_Transfer_and_Operons/13.05%3A_Gene_Regulation_-_Repressible_Operon
    This page explores bacterial operons central to gene regulation, highlighting inducible (e.g., lac operon) and repressible (e.g., trp operon) types that adjust protein expression based on environmenta...This page explores bacterial operons central to gene regulation, highlighting inducible (e.g., lac operon) and repressible (e.g., trp operon) types that adjust protein expression based on environmental factors. It explains the lac operon's functioning, where lactose presence alters repressor binding, promoting transcription. The regulation extends globally in prokaryotes using alarmones and factors like σ. Also noted are eukaryotic complexities involving enhancers and epigenetics.
  • https://bio.libretexts.org/Courses/City_College_of_San_Francisco/Introduction_to_Microbiology_(Liu_et_al.)/13%3A_Horizontal_Gene_Transfer_and_Operons/13.06%3A_Gene_Regulation_-_Inducible_Operon
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Courses/Manchester_Community_College_(MCC)/Remix_of_Openstax%3AMicrobiology_by_Parker_Schneegurt_et_al/06%3A_Mechanisms_of_Microbial_Genetics/6.7%3A_Gene_Regulation_and_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.
  • https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/11%3A_Mechanisms_of_Microbial_Genetics/11.07%3A_Gene_Regulation_-_Operon_Theory
    Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expressio...Genomic DNA contains both structural genes, which encode products that serve as cellular structures or enzymes, and regulatory genes, which encode products that regulate gene expression. The expression of a gene is a highly regulated process. Whereas regulating gene expression in multicellular organisms allows for cellular differentiation, in single-celled organisms like prokaryotes, it ensures that a cell’s resources are not wasted making proteins that the cell does not need at that time.

Support Center

How can we help?