This page outlines learning goals for biochemistry students on enzyme catalysis, covering mechanisms and roles of enzymes, particularly focusing on serine proteases like chymotrypsin and their catalyt...This page outlines learning goals for biochemistry students on enzyme catalysis, covering mechanisms and roles of enzymes, particularly focusing on serine proteases like chymotrypsin and their catalytic strategies. It details the function of magnesium in phosphate transfer, the classification of proteases, and the mechanisms of specific enzymes like carboxypeptidase A and lysozyme.
This page explores enzyme mechanisms, focusing on serine proteases like chymotrypsin, and how structural, kinetic, and thermodynamic factors influence catalysis. It covers the reaction dynamics, enzym...This page explores enzyme mechanisms, focusing on serine proteases like chymotrypsin, and how structural, kinetic, and thermodynamic factors influence catalysis. It covers the reaction dynamics, enzyme efficiency improvements, and the effects of inhibitors and solvents on enzyme activity. Insights include the importance of conformational flexibility, the effect of nonpolar solvents for catalysis, and thermodynamic factors affecting the stability of bound and transition state analog ligands.