Skip to main content
Biology LibreTexts

Biology in the Context of BIS2A


Biology is the scientific study of life. Studying biology is an opportunity to ask exciting questions about the world that surrounds us. It is an opportunity to dig into some of humanity's deepest questions about our origins, our planet's history, and our connections to other living beings (big and small/extant or extinct). It is also an opportunity to dive into a world of practical problem solving and to think hard about possible solutions for improving health care, maintaining sustainable food supplies, and producing renewable energy technologies.

Studying biology helps us understand issues and address everyday problems. For instance, you can better understand how what you eat and the amount you exercise influence your health when you understand the biochemical reactions that describe how the food (matter) is transformed, how it and your body store energy, and how this energy can be transferred from the food to your muscles. Deciding whether or not to buy products labeled with terms like "antimicrobial" or "probiotic" can be easier if you understand what the microbes, which live in, on, and around us, do. Understanding the biochemical principles that describe the changes that happen to eggs as they cook can help us understand how similar physical processes may be central to the cellular stress response and some diseases. Your eye color can be better appreciated with an understanding of the genetic and biochemical mechanisms that link genetic information to physical traits.

Studying biology even helps us understand things that are "out of this world." For instance, understanding the requirements for life can help us look for life in places like Mars or deep in Earth’s crust. When we understand how to properly “rewire” cellular decision-making networks, we may finally be able to regenerate functional limbs or organs from someone’s own tissue, or reprogram diseased tissues back to health. There are many exciting opportunities. The key point is that mastering a few basic principles helps you understand and think more deeply about a wide array of topics. Keep this notion in mind throughout the course.

Biology: an interdisciplinary science

Questions in biology span size scales in excess of ten orders of magnitude, from the atomic makeup and chemical behavior of individual molecules to planetary-scale systems of interacting ecologies. Whatever the scale of interest, to develop a deep and functional understanding of biology, we must first appreciate biological concepts. This involves integrating important ideas and tools from across the spectrum of science, including chemistry, physics, and mathematics. Biology is truly an interdisciplinary science.

The potential application of knowledge is broad

Some people may think studying biology is only about medicine—however, it can lead to or influence many different careers. Biology has applications that are both vast and wide-ranging. Applications include treating (human or other animal) patients, improving agricultural practices, developing new building materials, writing new energy policies, remedying global climate change, creating new works of art—the list goes on and on. For the curious, biology has plenty of unexplored mysteries.

As you study biology, appreciate its exciting questions and topics and be open-minded. Even though course topics may not always seem related at first, they likely are. Being open-minded helps you discover and appreciate the connections between the course’s topics and your interests. Discovering how seemingly different topics interrelate can give you a deeper appreciation for the things you enjoy and maybe even spark a new passion.

BIS2A—from molecules to cells

BIS2A focuses on the cell, one of the most fundamental units of life. Cells can be as simple as the disease-causing bacterium Mycoplasma genitalium, whose genome encodes just 525 genes (only 382 of which are essential for life), or as complex as a cell belonging to the multicellular plant Oryza sativa (rice), whose genome likely encodes ~51,000 genes. However, in spite of this diversity, all cells share some fundamental properties. In BIS2A, we explore basic problems that must be dealt with by all cells. We study the building blocks of cells, some of their key biochemical properties, how biological information is encoded and expressed in genetic material, and how all this combines to make a living system. We will also discuss some of the ways in which living systems exchange matter, energy, and information with their environment (including other living things). We focus primarily on core principles that are common to all life on Earth, and due to biology's large breadth, we put these ideas into a variety of contexts throughout the quarter.