9.22: Bis2A_Singer_Pyruvate_Oxidation_ and_ the_TCA_Cycle
- Page ID
- 69314
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Oxidation of Pyruvate and the TCA Cycle
Overview of Pyruvate Metabolism and the TCA Cycle
Under
The different fates of pyruvate and other end products of glycolysis
The glycolysis module left off with the end-products of glycolysis: 2 pyruvate molecules, 2 ATPs and 2 NADH molecules. This module and the module on fermentation explore what the cell can do with the pyruvate, ATP and NADH that
The fates of ATP and NADH
ATP can
What to do with the NADH however, depends on the conditions under which the cell is growing. Sometimes, the cell will opt to recycle NADH rapidly back into NAD+. This occurs through a process called fermentation. This process
The fate of cellular pyruvate
- Pyruvate can be a terminal electron acceptor (either directly or indirectly) in fermentation
reactions and we discuss this in the fermentation module. Pyruvate can be secreted from the cell as a waste product.- Pyruvate can
be further oxidized to extract more free energy from this fuel. - Pyruvate can serve as a valuable intermediate compound linking some core carbon processing metabolic
pathways
The further oxidation of pyruvate
In respiring bacteria and archaea, the pyruvate is further oxidized in the cytoplasm. In aerobically respiring eukaryotic cells, cells transport the pyruvate molecules produced at the end of glycolysis into mitochondria. These sites of cellular respiration house oxygen consuming electron transport chains (ETC in the module on respiration and electron transport). Organisms from all three domains of life share similar mechanisms to further oxidize the pyruvate to CO2. First pyruvate
Conversion of Pyruvate into Acetyl-CoA
In a multi-step reaction catalyzed by the enzyme pyruvate dehydrogenase, pyruvate
The Tricarboxcylic Acid (TCA) Cycle
In bacteria and archaea reactions in the TCA cycle typically happen in the cytosol. In eukaryotes, the TCA cycle takes place in the matrix of mitochondria. Almost all (but not all) of the enzymes of the TCA cycle are water soluble (not in the membrane), with the single exception of the enzyme succinate dehydrogenase, which
Figure 2. In the TCA cycle, the acetyl group from acetyl
Attribution: “
We are explicitly referring to eukaryotes, bacteria and archaea when we discuss the location of the TCA cycle because many beginning students of biology only associate the TCA cycle with mitochondria. Yes, the TCA cycle occurs in the mitochondria of eukaryotic cells. However, this pathway is not exclusive to eukaryotes; it occurs in bacteria and archaea too!
Steps in the TCA Cycle
Step 1:
The first step of the cycle is a condensation reaction involving the two-carbon acetyl group of acetyl-
Step 2:
In step two, citrate loses one water molecule and gains another as citrate converts into its isomer, isocitrate.
Step 3:
In step three, isocitrate
Step 4:
Step 4
Possible NB Discussion Point
We have seen several steps in this and other pathways that
Step 5:
In step five, a substrate level phosphorylation event occurs.
Step 6:
Step six is another red/ox reactions in which succinate
Step 7:
Water
Summary
Note that this process (oxidation of pyruvate to Acetyl-
Connections to Carbon Flow
One hypothesis that we have explored in this reading and in class is the idea that "central metabolism" evolved to generate carbon precursors for catabolic reactions. Our hypothesis also states that as cells evolved, these reactions became linked into pathways: glycolysis and the TCA cycle, to maximize their effectiveness for the cell. We can postulate that a side benefit to evolving this metabolic pathway was the generation of NADH from the complete oxidation of glucose - we saw the beginning of this idea when we discussed fermentation. We have already discussed how glycolysis not only provides ATP from substrate level phosphorylation but also yields a net of 2 NADH molecules and 6 essential precursors: glucose-6-P, fructose-6-P, 3-phosphoglycerate, phosphoenolpyruvate, and pyruvate. While ATP can
During the process of pyruvate oxidation via the TCA cycle,
Possible NB Discussion Point
Not all cells have a functional TCA cycle.
Since all cells require the ability
Additional Links
Here are some additional links to videos and pages that you may find useful.
Chemwiki Links
Chemwiki TCA cycle - link down untilkey content corrections are made to the resource
Introduction into the pentose phosphate pathway (PPP)
Discussions of metabolism in most introductory biology courses focus on glycolysis (oxidation of glucose to pyruvate) and the TCA cycle (oxidation of pyruvate to acetyl-CoA and the eventual complete oxidation to CO2). While these are important and universal metabolic pathways, many courses leave out the pentose phosphate pathway (PPP), also known as the hexose monophosphate shunt. In this class, we consider the PPP important for two key reasons. First, it is the primary route for the formation of pentoses, the five-carbon sugar required for nucleotide biosynthesis and a variety of other essential cellular components. Second, redox reactions in the PPP generate NADPH, the main mobile electron donor used in anabolic (building) reactions.
A note from the instructor
Like the modules on glycolysis and the TCA cycle, we do not expect students to memorize specific compound names or details of molecular structures in the pathway. We provide those details in the reading so you can understand the transformations occurring in this pathway and refer back to them when needed. Rather than memorizing, focus instead on the mastering the assigned learning goals related to the PPP.
Oxidative pentose phosphate pathway: a.k.a., the hexose monophosphate shunt
We call glycolysis, the TCA cycle and the pentose phosphate pathway central carbon metabolism. These three pathways (along with the reaction that converts pyruvate to acetyl-CoA) contain all the chemical precursors required by cells for the biosynthesis of nearly all other biomolecules. The PPP produces pentose phosphates (five-carbon sugars), eyrthrose-phosphate (a four-carbon sugar), and NADPH. The pentose phosphates are key precursors for nucleotide biosynthesis while NADPH serves as the main mobile electron donor for anabolic (building) reactions. The PPP also produces sedoheptulose-phosphate, an essential seven-carbon sugar used in the building of Gram-negative bacteria's outer cell membranes.
Below is a diagram of the pathway. The pathway involves several redox reactions and multiple molecular rearrangement that interconvert molecules of 3-, 4-, 5-, 6-, and 7-carbons. The pathway begins with the oxidation of Glucose-6-phosphate (G6P), a key intermediate of glycolysis, by the enzyme glucose-6-phosphate dehydrogenase (G6PDH). This enzyme oxidizes G6P through the coupled reduction of the electron carrier NADP+ to make NADPH. Enzymes called transaldolases and transketalases are used to produce the intermediates within the pathway. The net result is oxidation and subsequent decarboxylation of glucose to form a pentose. The total reaction involves three glucose-6-phosphate (in green) molecules being oxidized to form three CO2 molecules, one glyceraldehyde-phosphate (in red), and two hexose-phosphates (in red). In this cycle, the formed glyceradehyde-phosphate feeds into glycolysis and the two hexose-phosphates (e.g., glucose-phosphates) can recycle into the PPP or glycolysis.
As shown in the figure above, products of the pathway include glyceraldehyde-3-phosphate. This sugar can then be further oxidized via glycolysis. Fructose-6-phosphate that can reenter glycolysis and NADPH, a reductant for many biosynthetic (anabolic) reactions is also made. In addition, the pathway provides a variety of intermediate sugar-phosphates that the cell requires, such as pentose-phosphates (for nucleotides and some amino acids), erythrose-phosphate (for amino acids) and sedohepulose-phosphate (for gram-negative bacteria). The figure below illustrates the input-output relationship between PPP and the "top half" of glycolysis.
Figure 2. The relationship between glycolysis and PPP.
The Pentose Phosphate Pathway is shown as a "shunt" (alternative metabolic pathway) for glucose-6-phosphate.
Attribution: Marc T. Facciotti