Skip to main content
Biology LibreTexts

Membranes*#

  • Page ID
    21312
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Membranesmcat_gre_both_connection_doubleicon.JPG

    Plasma membranes enclose and define the borders between the inside and the outside of cells. They are typically composed of dynamic bilayers of phospholipids into which various other lipid-soluble molecules and proteins have also been embedded. These bilayers are asymmetric—the outer leaf differing from the inner leaf in lipid composition and in the proteins and carbohydrates that are displayed to either the inside or outside of the cell. One major function of the outer cell membrane is to communicate the cell’s unique identity to other cells. The proteins, lipids, and sugars displayed on the cell membrane allow for cells to be detected by and to interact with specific partners.

    Various factors influence fluidity, permeability, and various other physical properties of the membrane. These include temperature, the configuration of the fatty acid tails (some are kinked by double bonds), sterols (i.e., cholesterol) embedded in the membrane, and the mosaic nature of the many proteins embedded within it. The plasma membrane is “selectively permeable”. This means it allows only some substances through while excluding others. In addition, the plasma membrane must, sometimes, be flexible enough to allow certain cells, such as amoebae, to change shape and direction as they move through the environment, hunting smaller, single-celled organisms.

    Amoebae Hunting Video

    Cellular membranes

    A subgoal in our "build-a-cell" design challenge is to create a boundary that separates the "inside" of the cell from the environment "outside". This boundary needs to serve multiple functions that include:

    1. Act as a barrier by blocking some compounds from moving in and out of the cell.
    2. Be selectively permeable in order to transport specific compounds into and out of the cell.
    3. Receive, sense, and transmit signals from the environment to inside of the cell.
    4. Project "self" to others by communicating identity to other nearby cells.

    thickness.jpg

    Figure 1. The diameter of a typical balloon is 25cm and the thickness of the plastic of the balloon of around 0.25mm. This is a 1000X difference. A typical eukaryotic cell will have a cell diameter of about 50µm and a cell membrane thickness of 5nm. This is a 10,000X difference.

     

    Fluid mosaic model

    The fluid mosaic model describes the dynamic movement of the numerous proteins, sugars, and lipids embedded in the cell’s plasma membrane.

    For some insight into the history of our understanding of the plasma membrane structure, click here.

    It is sometimes useful to start our discussion by recalling the size of the cell membrane relative to the size of the entire cell cell. Plasma membranes range from 5 to 10 nm in thickness. For comparison, human red blood cells, visible via light microscopy, are approximately 8 µm wide, or approximately 1,000 times wider than a plasma membrane is thick. This means that the cellular barrier is very thin compared to the size of the volume it encloses. Despite this dramatic size differential, the cellular membrane must nevertheless still carry out its key barrier, transport and cellular recognition capacities and so must be a relatively “sophisticated” and dynamic structure.

     

     

    Figure_05_01_01.jpg

    Figure 2. The fluid mosaic model of the plasma membrane describes the plasma membrane as a fluid combination of phospholipids, cholesterol, and proteins. Carbohydrates attached to lipids (glycolipids) and to proteins (glycoproteins) extend from the outward-facing surface of the membrane.

    The principal components of a plasma membrane are lipids (phospholipids and cholesterol), proteins, and carbohydrates. Carbohydrates are present only on the exterior surface of the plasma membrane and are attached to proteins, forming glycoproteins, or to lipids, forming glycolipids. The proportions of proteins, lipids, and carbohydrates in the plasma membrane may vary with organism and cell type. In a typical human cell, proteins account for a massive 50 percent of the composition by mass, lipids (of all types) account for about 40 percent of the composition by mass, and carbohydrates account for the remaining 10 percent of the composition by mass. However, cellular functional specialization may cause these ratios of components to vary dramatically. For example, myelin, an outgrowth of the membrane of specialized cells, insulates the axons of the peripheral nerves, contains only 18 percent protein and 76 percent lipid. By contrast, the mitochondrial inner membrane contains 76 percent protein and only 24 percent lipid and the plasma membrane of human red blood cells is 30 percent lipid.

     

    Phospholipids

    Phospholipids are major constituents of the cell membrane. Phospholipids are made of a glycerol backbone to which two fatty acid tails and a phosphate group have been attached - one to each of each of the glycerol carbons atoms. The phospholipid is therefore an amphipathic molecule, meaning it has a hydrophobic part (fatty acid tails) and a hydrophilic part (phosphate head group).

    Make sure to note in Figure 3 that the phosphate group has an R group linked to one of the oxygen atoms. R is a variable commonly used in these types of diagrams to indicate that some other atom or molecule is bound at that position. That part of the molecule can be different in different phospholipids—and will impart some different chemistry to the whole molecule. At the moment, however, you are responsible for being  able to recognize this type of  molecule (no matter what the R group is) because of the common core elements—the glycerol backbone, the phosphate group, and the two hydrocarbon tails.

    glycerophosphate_cartoon2.png

     

    Figure 3. A phospholipid is a molecule with two fatty acids and a modified phosphate group attached to a glycerol backbone. The phosphate may be modified by the addition of charged or polar chemical groups. Several chemical R groups may modify the phosphate. Choline, serine, and ethanolamine are shown here. These attach to the phosphate group at the position labeled R via their hydroxyl groups.
    Attribution: Marc T. Facciotti (own work)

    When many phospholipids are together exposed to an aqueous environment, they can spontaneously arrange themselves into various structures including micelles and phospholipid bilayers. The latter is the basic structure of the cell membrane. In a phospholipid bilayer, the phospholipids associate with one another into two oppositely-facing sheets. In each sheet nonpolar parts of the phospholipids face inward towards one another, composing the internal part of the membrane, and polar head groups facing oppositely to both the aqueous extracellular and intracellular environments.

     


    Possible NB Discussion nb-sticker.pngPoint

    Earlier in the course, we discussed the Second Law of Thermodynamics, which states that the overall entropy of the universe is always increasing. Apply this law in the context of the formation of the lipid bilayer membrane. How is it possible that the lipids are able to spontaneously arrange themselves into such an organized structure instead of scatter into a more disordered state? Or in other words -- if the second law holds true, then how exactly does the spontaneous lipid organization lead to increased entropy?


     

    micelle.jpg

    Figure 4. In the presence of water, some phospholipids will spontaneously arrange themselves into a micelle. The lipids will be arranged such that their polar groups will be on the outside of the micelle, and the nonpolar tails will be on the inside. A lipid bilayer can also form, a two layered sheet only a few nanometers thick. The lipid bilayer consists of two layers of phospholipids organized in a way that all the hydrophobic tails align side by side in the center of the bilayer and are surrounded by the hydrophilic head groups.
    Source: Created by Erin Easlon (own work)

     

     

    Membrane proteins

    Proteins make up the second major component of plasma membranes. Integral membrane proteins, as their name suggests, integrate completely into the membrane structure, and their hydrophobic membrane-spanning regions interact with the hydrophobic region of the phospholipid bilayer.

    Some membrane proteins associate with only one half of the bilayer, while others stretch from one side of the membrane to the other, and are exposed to the environment on either side. Integral membrane proteins may have one or more transmembrane segments typically consisting of 20–25 amino acids. Within the transmembrane segments, hydrophobic amino acid variable groups arrange themselves to form a chemically complementary surface to the hydrophobic tails of the membrane lipids.

    Peripheral proteins are found on only one side of the membrane, but never embed into the membrane. They can be on the intracellular side or the extracellular side, and weakly or temporarily associated with the membranes.

     

    Figure_05_01_04.jpg

    Figure 5. Integral membranes proteins may have one or more α-helices (pink cylinders) that span the membrane (examples 1 and 2), or they may have β-sheets (blue rectangles) that span the membrane (example 3). (credit: “Foobar”/Wikimedia Commons)

    Carbohydrates

    Carbohydrates are a third major component of plasma membranes. They are always found on the exterior surface of cells and are bound either to proteins (forming glycoproteins) or to lipids (forming glycolipids). These carbohydrate chains may consist of 2–60 monosaccharide units and can be either straight or branched. Along with peripheral proteins, carbohydrates form specialized sites on the cell surface that allow cells to recognize each other (one of the core functional requirements noted above.

    Membrane fluidity

    The integral proteins and lipids exist in the membrane as separate molecules and they "float" in the membrane, moving with respect to one another. The membrane is not like a balloon, however; because of the elastic properties of its plastic a balloon can easily grow and shrink its surface area without popping and while also maintaining the same rough circular shape. By contrast the plasma membrane is not able to withstand isotropic stretching or compression and can be easily popped when an imbalance of solute between inside and out causes water to rush in suddenly. A sudden loss of water will cause it to shrivel and wrinkle, dramatically changing the shape of the cell. it is fairly rigid and can burst if penetrated or if a cell takes in too much water and the membrane is stretched too far. However, because of its mosaic nature, a very fine needle can easily penetrate a plasma membrane without causing it to burst (the lipids flow around the needle point), and the membrane will self-seal when the needle is extracted.

    Different organisms and cell types in multicellular organisms can tune fluidity of their membrane to be more compatible with specialized functions and/or in response to environmental factors. This tuning can be accomplished by adjusting the type and concentration of various components of the membrane, including the lipids, their degree of saturation, the lipids, their degree of saturation, the proteins, and other molecules like cholesterol. There are two other factors that help maintain this fluid characteristic. One factor is the nature of the phospholipids themselves. In their saturated form, the fatty acids in phospholipid tails are saturated with hydrogen atoms. There are no double bonds between adjacent carbon atoms, resulting in tails that are relatively straight. By contrast, unsaturated fatty acids do not have a full complement of hydrogen atoms on their fatty acid tails and therefore contain some double bonds between adjacent carbon atoms; a double bond results in a bend in the string of carbons of approximately 30 degrees.

    fluid.jpg

    Figure 6. Any given cell membrane will be composed of a combination of saturated and unsaturated phospholipids. The ratio of the two will influence the permeability and fluidity of the membrane. A membrane composed of completely saturated lipids will be dense and less fluid, and a membrane composed of completely unsaturated lipids will be very loose and very fluid.

    Saturated fatty acids, with straight tails, are compressed by decreasing temperatures, and they will press in on each other, making a dense and fairly rigid membrane. Conversely, when unsaturated fatty acids are compressed, the “kinked” tails elbow adjacent phospholipid molecules away, maintaining some space between the phospholipid molecules. This “elbow room” helps to maintain fluidity in the membrane at temperatures at which membranes with high concentrations of saturated fatty acid tails would “freeze” or solidify. The relative fluidity of the membrane is particularly important in a cold environment. Many organisms (fish are one example) are capable of adapting to cold environments by changing the proportion of unsaturated fatty acids in their membranes in response to the lowering of the temperature.

    Cholesterol

    Animal cells have cholesterol, an additional membrane constituent that assists in maintaining fluidity. Cholesterol, which lies right in between the phospholipids in the membrane, tends to dampen the effects of temperature on the membrane.Cholesterol both stiffens and increases membrane fluidity, depending on the temperature. Low temperatures cause phospholipids to pack together more tightly, creating a stiffer membrane. In this case, the cholesterol molecules serve to space the phospholipids apart and prevent the membrane from becoming totally rigid. Conversely, higher temperatures contribute to phospholipids moving farther apart from each other and therefore a more fluid membrane, but cholesterol molecules in the membrane take up space and prevent the complete dissociation of phospholipids.

    Thus, cholesterol extends, in both directions, the range of temperature in which the membrane is appropriately fluid and consequently functional. Cholesterol also serves other functions, such as organizing clusters of transmembrane proteins into lipid rafts.

     

    cholesterol1.jpg

    Figure 7. Cholesterol fits between the phospholipid groups within the membrane.

    Review of the components of the membrane

    The components and functions of the plasma membrane
    Component Location
    Phospholipid Main fabric of the membrane
    Cholesterol Between phospholipids and between the two phospholipid layers of animal cells
    Integral proteins (e.g., integrins) Embedded within the phospholipid layer(s); may or may not penetrate through both layers
    Peripheral proteins On the inner or outer surface of the phospholipid bilayer; not embedded within the phospholipids
    Carbohydrates (components of glycoproteins and glycolipids) Generally attached to proteins on the outside membrane layer

     

    Archaeal membranes

    One major difference setting archaea apart from eukaryotes and bacteria is their membrane lipid composition. Though eukaryotes, bacteria, and archaea all use glycerol backbones in their membrane lipids, Archaea use long isoprenoid chains (20-40 carbons in length, derived from the five-carbon lipid isoprene) that are attached via ether linkages to glycerol, whereas eukaryotes and bacteria have fatty acids bonded to glycerol via ester linkages.

    The polar head groups differ based on the genus or species of the Archaea and consist of mixtures of glyco groups (mainly disaccharides), and/or phospho groups primarily of phosphoglycerol, phosphoserine, phosphoethanolamine or phosphoinositol. The inherent stability and unique features of archaeal lipids have made them a useful biomarker for archaea within environmental samples, though approaches based on genetic markers are now more commonly used.

    A second difference between bacterial and archaeal membranes that is associated with some archaea is the presence of monolayer membranes, as depicted below. Notice that the isoprenoid chain is attached to the glycerol backbones at both ends, forming a single molecule consisting of two polar head groups attached via two isoprenoid chains.

    archaeal_membranes1.jpg

     

    Figure 8. The exterior surface of the archaeal plasma membrane is not identical to the interior surface of the same membrane.

     

    membranes2.jpg

     

    Figure 9. Comparisons of different types of archaeal lipids and bacterial/eukaryotic lipids

     


    This page titled Membranes*# is shared under a not declared license and was authored, remixed, and/or curated by Marc Facciotti.

    • Was this article helpful?