Skip to main content
Biology LibreTexts

3.2F: Mycorrhizae- The Symbiotic Relationship between Fungi and Roots

  • Page ID
    105543
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Many plants form associations called mycorrhizae with fungi that give them access to nutrients in the soil, protecting against disease and toxicities.

    Learning Objectives
    • Describe the symbiotic relationship of mycorrhizae and plant roots

    Key Points

    • Because nutrients are often depleted in the soil, most plants form symbiotic relationships called mycorrhizae with fungi that integrate into the plant’s root.
    • The relationship between plants and fungi is symbiotic because the plant obtains phosphate and other minerals through the fungus, while the fungus obtains sugars from the plant root.
    • The long extensions of the fungus, called hyphae, help increase the surface area of the plant root system so that it can extend beyond the area of nutrient depletion.
    • Ectomycorrhizae are a type of mycorrhizae that form a dense sheath around the plant roots, called a mantle, from which the hyphae grow; in endomycorrhizae, mycelium is embedded within the root tissue, as opposed to forming a sheath around it.
    • In endomycorrhizae, mycelium is embedded within the root tissue, as opposed to forming a sheath around it; these are found in the roots of most terrestrial plants.

    Key Terms

    • mycorrhiza: a symbiotic association between a fungus and the roots of a vascular plant
    • hypha: a long, branching, filamentous structure of a fungus that is the main mode of vegetative growth
    • mycelium: the vegetative part of any fungus, consisting of a mass of branching, threadlike hyphae, often underground

    Mycorrhizae: The Symbiotic Relationship between Fungi and Roots

    image

    Mycorrhizae: Hyphae proliferate within the mycorrhizae, which appears as off-white fuzz in this image. These hyphae greatly increase the surface area of the plant root, allowing it to reach areas that are not depleted of nutrients.

    A nutrient depletion zone can develop when there is rapid soil solution uptake, low nutrient concentration, low diffusion rate, or low soil moisture. These conditions are very common; therefore, most plants rely on fungi to facilitate the uptake of minerals from the soil. Mycorrhizae, known as root fungi, form symbiotic associations with plant roots. In these associations, the fungi are actually integrated into the physical structure of the root. The fungi colonize the living root tissue during active plant growth.

    image
    Figure: Ectomycorrhizae: Ectomycorrhizae form sheaths, called a mantle, around the roots of plants, as shown in this image.

    Through mycorrhization, the plant obtains phosphate and other minerals, such as zinc and copper, from the soil. The fungus obtains nutrients, such as sugars, from the plant root. Mycorrhizae help increase the surface area of the plant root system because hyphae, which are narrow, can spread beyond the nutrient depletion zone. Hyphae are long extensions of the fungus, which can grow into small soil pores that allow access to phosphorus otherwise unavailable to the plant. The beneficial effect on the plant is best observed in poor soils. The benefit to fungi is that they can obtain up to 20 percent of the total carbon accessed by plants. Mycorrhizae function as a physical barrier to pathogens. They also provides an induction of generalized host defense mechanisms, which sometimes involves the production of antibiotic compounds by the fungi. Fungi have also been found to have a protective role for plants rooted in soils with high metal concentrations, such as acidic and contaminated soils.

    There are two types of mycorrhizae: ectomycorrhizae and endomycorrhizae. Ectomycorrhizae form an extensive dense sheath around the roots, called a mantle. Hyphae from the fungi extend from the mantle into the soil, which increases the surface area for water and mineral absorption. This type of mycorrhizae is found in forest trees, especially conifers, birches, and oaks. Endomycorrhizae, also called arbuscular mycorrhizae, do not form a dense sheath over the root. Instead, the fungal mycelium is embedded within the root tissue. Endomycorrhizae are found in the roots of more than 80 percent of terrestrial plants.


    3.2F: Mycorrhizae- The Symbiotic Relationship between Fungi and Roots is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?