Skip to main content
Biology LibreTexts

14.4: Prokaryotic and Eukaryotic Gene Regulation

  • Page ID
    44507
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Outcomes

    Compare prokaryotic and eukaryotic gene regulation

    To understand how gene expression is regulated, we must first understand how a gene codes for a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different manners.

    Prokaryotic organisms are single-celled organisms that lack a cell nucleus, and their DNA therefore floats freely in the cell cytoplasm. To synthesize a protein, the processes of transcription and translation occur almost simultaneously. When the resulting protein is no longer needed, transcription stops. As a result, the primary method to control what type of protein and how much of each protein is expressed in a prokaryotic cell is the regulation of DNA transcription. All of the subsequent steps occur automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is mostly at the transcriptional level.

    Eukaryotic cells, in contrast, have intracellular organelles that add to their complexity. In eukaryotic cells, the DNA is contained inside the cell’s nucleus and there it is transcribed into RNA. The newly synthesized RNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the RNA into protein. The processes of transcription and translation are physically separated by the nuclear membrane; transcription occurs only within the nucleus, and translation occurs only outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process (Figure 1). Regulation may occur when the DNA is uncoiled and loosened from nucleosomes to bind transcription factors (epigenetic level), when the RNA is transcribed (transcriptional level), when the RNA is processed and exported to the cytoplasm after it is transcribed (post-transcriptional level), when the RNA is translated into protein (translational level), or after the protein has been made (post-translational level).

    Prokaryotic cells do not have a nucleus, and DNA is located in the cytoplasm. Ribosomes attach to the mRNA as it is being transcribed from DNA. Thus, transcription and translation occur simultaneously. In eukaryotic cells, the DNA is located in the nucleus, and ribosomes are located in the cytoplasm. After being transcribed, pre-mRNA is processed in the nucleus to make the mature mRNA, which is then exported to the cytoplasm where ribosomes become associated with it and translation begins.
    Figure 1. Prokaryotic transcription and translation occur simultaneously in the cytoplasm, and regulation occurs at the transcriptional level. Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, and during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins.

    The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in Table 1. The regulation of gene expression in these types of organisms is discussed in detail in subsequent sections.

    Table 1. Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms
    Prokaryotic organisms Eukaryotic organisms
    Lack nucleus Contain nucleus
    DNA is found in the cytoplasm DNA is confined to the nuclear compartment
    RNA transcription and protein formation occur almost simultaneously RNA transcription occurs prior to protein formation, and it takes place in the nucleus. Translation of RNA to protein occurs in the cytoplasm.
    Gene expression is regulated primarily at the transcriptional level Gene expression is regulated at many levels (epigenetic, transcriptional, nuclear shuttling, post-transcriptional, translational, and post-translational)

    Practice Questions

    Control of gene expression in eukaryotic cells occurs at which level(s)?

    1. only the transcriptional level
    2. epigenetic and transcriptional levels
    3. epigenetic, transcriptional, and translational levels
    4. epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

    [reveal-answer q=”386227″]Show Answer[/reveal-answer]
    [hidden-answer a=”386227″]Answer d. Control of gene expression in eukaryotic cells occurs at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels.

    [/hidden-answer]

    Post-translational control refers to the:

    1. regulation of gene expression after transcription
    2. regulation of gene expression after translation
    3. control of epigenetic activation
    4. period between transcription and translation

    [reveal-answer q=”960802″]Show Answer[/reveal-answer]
    [hidden-answer a=”960802″]Answer b. Post-translational control refers to the regulation of gene expression after translation[/hidden-answer]

    Contributors and Attributions

    CC licensed content, Shared previously

    14.4: Prokaryotic and Eukaryotic Gene Regulation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?