Skip to main content
Biology LibreTexts

15.4: Saving Species Through Translocations

  • Page ID
    71533
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Because the probability of extinction increases rapidly for small populations, conservation biologists often invest considerable energy into increasing the size of small and declining populations. Often, these projects involve improving the extent and quality of suitable habitat or mitigating threats such as overharvesting. When appropriate, conservation biologists may sometimes resort to translocations—moving individuals from sites where they are threatened (e.g. unprotected lands or a paper park) or overabundant (e.g. a well-managed protected area or ex situ conservation facility) to sites where they can offer a larger contribution to conservation efforts.

    Understanding a species’ ecological needs is critically important for translocations, because it influences the choice of release site and type of preparations needed.

    Conservation biologists generally recognize four basic translocation approaches:

    • Restocking (also called augmentation) occurs when wildlife managers increase the size and genetic diversity of existing populations, by releasing individuals that have been raised in captivity or that have been obtained from other wild populations.
    • Reintroduction occurs when wildlife managers release individuals into areas where they occurred in the past but not at present. The areas must be ecologically suitable and the factors that caused the extirpation must have been reduced or eliminated for a reintroduction to be successful.
    • Introduction involves creating new populations by moving individuals to suitable areas outside that species’ historical range. Introductions are usually considered when reintroductions are impossible because the species’ historical range has been degraded too severely or because persistent threats will lead to reintroduction failure.
    • Assisted colonization (also called assisted migration) is a special class of introduction where biologists “assist” species with poor dispersal capabilities to adapt their ranges in response to environmental changes. It is anticipated that this strategy will become an important conservation tool in preventing extinctions where climate change outpaces the speed of natural migration.

    Important considerations for translocations

    Section 15.3 broadly discussed the importance of understanding the ecological and other natural history needs when protecting threatened species. Understanding a species’ ecological needs is equally, if not more, important for translocations, because it influences the choice of release site and type of preparations needed (Figure 15.4.1). Complementing the 10 factors mentioned in Section 15.3, the next section briefly introduces some of the most important considerations during translocations.

    Fig_11.4_Vulpro-2.jpg
    Figure 15.4.1 A team of wildlife rehabilitators release a group of Cape vultures (Gyps coprotheres, EN) near a vulture restaurant in South Africa. Releasing the vultures near a supplemental food source greatly enhances their chances for survival after release. The vultures have wing tags to enable monitoring of each individual after release. Photograph by VulPro, CC BY 4.0.

    Determining need and feasibility

    Perhaps the most important factor to consider before starting a translocation is to determine whether it is necessary. Translocations carry risks, not only for the target population to be moved, but also the individuals left behind and for the recipient ecosystem. These risks expose translocation projects to a high risk of failure, particularly if preparations are inadequate and essential resources (e.g. funding, trained staff) are in short supply. Translocations also demand considerable resources—resources that can at times be better spent mitigating the threats the target population face. While these considerations may seem obvious, a recent review found that most translocations projects are initiated without proper cost-benefit analyses (Pérez et al., 2012). To improve translocation practices, conservationists seriously considering a translocation project are encouraged to review the 10 criteria outlined in Pérez et al. (2012), some of which also overlap with the considerations mentioned below.

    Support from local stakeholders

    It is also important to consider, at an early stage, how the public will view the translocation project. Some people may feel the resources used in a translocation are better invested elsewhere; others dislike translocations because they view it as a threat to their livelihood—this is especially true when carnivores are involved (Gusset et al., 2008a). Because of these and other potential conflicts and emotions, it is crucial that translocation projects (like any conservation activity) obtain the support from local stakeholders at an early stage. It is helpful to be transparent from the outset and to explain the project’s goals, as well as the benefits the local community may gain (e.g. attract more tourists, restore a degraded ecosystem service). Good public outreach also provides opportunities to address the public’s concerns and misconceptions about the project and about biodiversity conservation in general.

    Identifying suitable habitat

    It goes without saying that the probability for success is greatly improved when the translocated individuals are released in good quality habitat. This is particularly true for species with poor dispersal capabilities, such as plants that reproduce through vegetative propagation: the plants could die in an environment that is too sunny, shady, wet, or dry. While this point may seem obvious, many translocations fail because individuals are released in inferior habitats (Armstrong and Seddon, 2007). One of the reasons for this potential habitat mismatch is because wildlife may perceive the environment differently than humans, so a site that may look good to the human eye may lack one or more overlooked limiting resource. Refugee species—species forced to live in suboptimal habitat due to threats present in their preferred habitat (e.g. Ali et al., 2017)—also present a challenge to biologists who may unwittingly view inferior habitat as optimal and base conservation decisions on essentially bad information. The same challenge presents itself at ecological traps—unsuitable environments that an organism mistakenly perceives as optimal habitat (e.g. Sherley et al., 2017). These are some of the most important reasons why biologists need to be cautions when using species distribution models (SDM) when identifying areas suitable for translocations. To mitigate costly translocation failures, it is advisable that releases start small, and have multiple phases, to assess how released individuals respond to their new environment. Conducting experimental and adaptive releases can also reduce uncertainty by evaluating different release scenarios (Menges et al., 2016).

    Species forced to live in suboptimal habitat due to threats present in their preferred habitat may lead biologists to unwittingly view inferior habitat as optimal.

    It is also important to ensure that any habitat identified as suitable is free from threats such as pollution and invasive species that may lead to declining health or even death for released individuals.

    Fig_11.5a_Lucas-2.jpg
    Fig_11.5b_Klotz-2.jpg
    Figure 15.4.2 (Top) Conservation biologists collecting threatened Clanwilliam sandfish for a reintroduction project in the Cape Floristic Region, South Africa. Photograph by John Lucas/explore4knowledge®, CC BY 4.0. (Bottom) A close-up view of Clanwilliam sandfish. Photograph by Gustav Klotz/explore4knowledge®, CC BY 4.0.

    Considering genetics and behavior

    Translocation projects also need to consider the genetic makeup, social organization, and behavior of a species that is being released. It is preferable to use individuals from the same genetic stock as individuals that already occur (or have occurred) in the release area to avoid outbreeding depression and to capture local adaptations. Such efforts simultaneously also contribute to conservation of genetic diversity, as opposed to the pollution thereof if individuals from different genetic stock are mixed.

    Group-living species, particularly those vulnerable to Allee effects, need to be released in sufficient numbers so they can maintain their natural social organization and behavior. For species that need to be released in groups, it is preferable to release socially integrated animals rather than individuals unfamiliar with each other (Gusset et al., 2008). Releasing groups of animals does have its own set of challenges. For example, social groups abruptly released from captivity may disperse explosively, possibly leading to project failure.

    The ultimate aim of most translocation projects is to establish populations that are self-sustaining, free from inbreeding, and interactive participants of their communities and ecosystems.

    How many individuals to release

    The ultimate aim of translocation projects is to establish ecologically relevant populations, meaning populations that are self-sustaining, free from inbreeding, and an interactive participant of its community and ecosystem. The probability of achieving this goal increases as more individuals are being released. Because translocation projects typically do not have an unlimited supply of individuals to release, wildlife managers often rely on quantitative models to estimate the minimum number of individuals that should be released and how many times releases should occur.

    The ability to establish new populations through translocations does not reduce the need to protect threatened species still in their natural habitats.

    While releasing more individuals certainly improves the likelihood of establishing a self-sustaining population, it is also important to determine how many individuals the target community can sustain. In other words, the release area should contain enough suitable habitat to support the territories of all the released individuals. To determine how many individuals can be sustained, wildlife managers may calculate the release area’s carrying capacity—an estimate of the maximum number of individuals an ecosystem can support. The carrying capacity concept has its roots in the livestock trade, where farmers wanted to maximize the number of animals on their land without risking overgrazing. While the concept has gained popularity in conservation biology in recent decades, calculating the carrying capacity for wildlife is very complex because of all the multi-faceted interactions that characterize healthy ecosystems. For example, the carrying capacity for a wild population can depend on factors such as food, water, shelter, soil nutrients, and sunlight availability, as well as more species-specific natural history factors such as habitat quality, home range, sex ratios (Tambling et al., 2014), and interactions with other species (Lindsey et al., 2011).

    Preparing individuals for release

    Translocation projects using individuals obtained from the wild are generally much more successful than those using captive-bred individuals, given that wild individuals are already adapted to a life where they must fend for themselves. Nevertheless, some projects may have to use captive-bred individuals, particularly when the target species is extinct in the wild, or when individuals were brought to an ex situ conservation facility because it is easier to breed them under human care in controlled conditions. In such cases, a great amount of effort may be required to prepare the captive-bred individuals for releases.

    A major drawback when using captive-bred individuals is that they may have lost the important adaptations required for survival and successful reproduction in the wild. Pre-release training, which varies according to the species, can sometimes overcome this drawback. For predators, it may involve providing low risk prey, such as chickens and domestic rabbits in holding facilities until their hunting skills are better developed (Houser et al., 2011). For plants propagated indoors, it may involve hardening them off by placing them outside for increasingly longer periods to gradually introduce them to sun, wind, and temperature changes during the day. To help young birds disassociate humans from food, human trainers sometimes use puppets or wear costumes (Figure 15.4.3) during feeding time to mimic the appearance and behavior of wild individuals (Valutis and Marzluff, 1999). Another method, which may promote behavioral enrichment, involves cross-fostering, in which unrelated parents helps raise the offspring of a threatened species. However, cross-fostering using different species may lead to a new set of problems, like behavioral changes and hybridisation, if the young subsequently associate with the wrong species. A great amount of care and research are thus needed before such strategies are attempted.

    Fig_11.6_Dolpire-2.jpg
    Figure 15.4.3 Wattled cranes (Grus carunculate, VU) sometimes lay two eggs, but always abandon the second egg. Conservation biologists in South Africa are collecting the discarded eggs, which are then hatched in a captive breeding program. To avoid the captive chicks associating humans with food and safety after release, handlers use special crane costumes when interacting with the birds. Photograph by Daniel Dolpire, CC BY 4.0.

    Whether using captive-bred or wild individuals for translocations, individuals may have to be fed, sheltered, trained, or otherwise cared for after release to give them time to become more familiar with their new surroundings. This approach, known as soft release, involves keeping the released individuals in pre-release holding facilities for a period; it may also include some form of assistance after release to increase opportunities for success. Soft releases also provide an opportunity to introduce captive-bred organisms to wild individuals of the same species that can act as “instructors” for survival in the new environment, or for unfamiliar individuals to bond into cohesive units (Gusset et al., 2006).

    The alternative to soft release is a hard release—an abrupt release of individuals from captivity without assistance such as food supplementation. While hard releases are popular (because they are relatively easy to perform), it is a risky strategy that faces a high risk to failure (Brown et al., 2007; Wimberger et al., 2009). Hard releases can however be appropriate under the right conditions (Hayward et al., 2007b). For example, hard releases are often use in head-starting programs (Figure 15.4.4) for reptiles and amphibians (Scheele et al., 2014), where conservation biologists collect wild individuals and raise them past their most vulnerable life stages before releasing them again where they were collected.

    Fig_11.7_K_ClukeyTOMAGE-INDEFOR.jpg
    Figure 15.4.4 Local children releasing leatherback sea turtles (Dermochelys coriacea, VU) as part of an environmental education project in Equatorial Guinea. Known as head-starting, conservationists would sometimes collect sea turtle eggs in the wild, hatched in captivity, and raise the offspring past their most vulnerable stage before releasing them back where they were found. Photograph by Katharine Clukey/TOMAGE-INDEFOR, CC BY 4.0.

    Post-release monitoring

    A translocation project does not end after the last individual was released. Rather, ongoing monitoring should be implemented to determine whether a translocation was successful, what degree of success was achieved, whether adaptive management is needed, whether additional releases should be conducted, or whether the project should be aborted. A well-designed monitoring plan can also highlight the consequences of translocation on the broader ecosystem, such as the impact that predators introduced to a new area may have on prey populations and competing species (Groom et al., 2017). Because some responses in translocated populations can be rather subtle and take many years to show or subside, post-release monitoring should ideally be a long-term endeavor.


    This page titled 15.4: Saving Species Through Translocations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John W. Wilson & Richard B. Primack (Open Book Publishers) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.