Skip to main content
Biology LibreTexts

14.5: Restoring Damaged Ecosystems

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ecosystems are regularly disturbed by natural phenomena such as floods from cyclones/hurricanes, or wildfires started by lightning. Nevertheless, natural disturbances typically lead to succession and a return to ecological conditions that can sustain high levels of biodiversity. In contrast, ecosystems that humans have damaged or destroyed through activities such as unsustainable agriculture and deforestation, overgrazing, or pollution tend to lose their ability to rebound without human intervention.

    Ecological restoration is the practice of restoring damaged ecosystems to a point where their ecosystem functions and species composition resemble their original or near-original state. Restoration ecology, in turn, is the scientific study of restoring damaged ecosystems, communities, and populations. Ecological restoration is often the best method for providing for the long-term use of degraded sites, whether considered from the perspectives of ecology, social benefit, or even economic benefit. Consequently, and unsurprisingly, this practice and the science originally developed in response to attempts to restore economically valuable ecosystem functions: creating wetlands to prevent flooding, reclaiming mining sites to prevent pollution and soil erosion, revegetating overgrazed rangelands to increase grass production, and planting trees on cleared areas to improve agroforestry.

    Best practices in ecological restoration have undergone major advances in recent decades. In the past, restoration methods mostly aimed for quick economic benefit, which resulted in simplified ecosystems that either failed to establish or degraded after a short time. To avoid such costly mistakes, restoration plans of today increasingly aim for the permanent re-establishment of healthy ecosystems that could support sustainable industries such as ecotourism, wildlife management, carbon sequestration, and low-level grazing by livestock. Ecological restoration often also makes economic sense; a study from South Africa found that every US $1 invested in restoring ecosystem services would generate US $8.30 for the local economy (de Wit et al., 2008).

    Ecological restoration approaches

    There are four main approaches to ecological restoration (Figure 14.5.1):

    Figure 14.5.1 Several approaches can be followed when restoring an ecosystem, ranging from taking no action and letting the ecosystem regenerate naturally to completely restoring a degraded site. The best course of action will depend on a project’s end goals and the resources available. After Bradshaw, 1990, CC BY 4.0.
    • Natural regeneration. Degraded areas, such as abandoned fields or logged areas, are allowed to naturally reseed and return to grasslands or forests. Land managers often choose this approach when active restoration is too expensive, when earlier restoration attempts have failed, or when experience has shown that the ecosystem is resilient and can recover on its own (e.g. Crouzeilles et al., 2017).
    • Rehabilitation. Land managers improve conditions of a degraded ecosystem by transitioning it to another, different ecosystem type. For example, land managers could rehabilitate a degraded forest by transitioning it to a tree plantation. Rehabilitation could involve replacing just a few species or many species.
    • Partial restoration. Land managers restore some ecosystem functions and some of the species that were dominant or characteristic of the ecosystem. For example, as a part of a grassland restoration, land managers might initially replant a few key species that are hardy and contribute to ecosystem functioning; they could delay restoration of rare species until later phases.
    • Complete restoration. Land managers restore an area to benchmark ecosystem structure, mix of species, and ecosystem functioning. Complete restoration usually requires an active program to modify the site, reintroduce native species, and eliminate or reduce the factors that were degrading the ecosystem.

    Before a restoration project is initiated, and the type of approach is decided upon, land managers must consider how quickly the ecosystem can recover, resource needs and availability, the availability of locally adapted taxa, and the work that might be required to allow the restored community to persist over the long term. Examples of specific considerations include how to prepare soils, how to handle translocated organisms, when and how much fertilizer and water to add, and how to prevent invasions by unwanted species (Galatowitsch and Richardson, 2005; Zabbey and Tanee, 2016). It is also important to remember that ecosystems generally fail to recover if the factor that caused them to become degraded in the first place is not removed or reduced. For instance, efforts to reverse desertification would require a reduction of grazing pressure and unsustainable agricultural practices.

    Some conservation efforts center around a single species. Often this is a charismatic animal that elicits public interest, such tigers, sea otter, or the California Condor. The specific approach depends on specific threats based by the species of focus. A common strategy is to propagate rare plants and reintroduce them to locations where they were extirpated (went locally extinct). Protecting or restoring habitat is another component of the conservation of rare plant species.

    Seemingly unimpressive species can still serve vital ecological roles, but they are often overlooked in conservation efforts. In fact, a 2007 study by Colléony and colleagues found that people more often donated to conservation efforts for species that were more similar to humans rather than choosing those that were at greatest risk of extinction. Broad approaches such as establishing protected areas and ecosystem restoration benefit charismatic and non-charismatic species alike. Additionally, broad approaches protect unidentified and species that have not been assessed.

    To measure restoration success, biologists often aim to restore degraded areas to conditions (ecosystem functions or species composition) comparable to a chosen benchmark or reference site. Reference sites provide practical targets for restoration and can be used to quantitatively assess of the success of a restoration project. Comparing restoration progress against a reference site also allows land managers to intervene or adjust their methods if restoration goals are not being met. This approach, in which land managers monitor conditions and adjust their protocols as and when needed, is known as adaptive restoration.

    Major restoration targets

    Many human-altered ecosystems have proven to be good candidates for ecological restoration. These include tropical rainforests, wetlands, rangelands, and coral reefs.

    Tropical forests: Tropical forests cover less than 10% of Earth’s land surface; yet, they contain more than half of all terrestrial species (Cortlett and Primack, 2011). When these forests are lost, we lose substantial biodiversity and ecosystem services. For this reason, tropical forest restoration initiatives have received much attention in recent years. Towards the end of this chapter we will discuss a major global effort focussed on restoring degraded tropical forests, known as REDD+.

    Wetlands: Because of the recognized importance of wetlands in providing flood control and other ecosystem services, damaged wetlands are frequently targeted in restoration efforts. Wetlands are defined by their hydrology; therefore, wetland restoration projects often the focus on restoring a site’s original hydrology. Wetland restoration can also occur through activities like dam removals or replacing exotic vegetation that deplete groundwater with native vegetation to promote groundwater retention (Sirami et al., 2013). Importantly, true wetland restorations are notoriously difficult to accomplish. It can be relatively easy to replant a wetland to look as it previously looked, but to restore the foundational hydrology often requires sophisticated engineering. In many cases, partial wetland rehabilitation is the best that can be achieved.

    Mangrove swamps (Figure 14.5.2) provide nursery grounds for many economically important fisheries, protect coastal communities against powerful storms, and prevent saltwater from intruding into freshwater systems (van Bochove et al., 2014). They are also among the world’s most important carbon sinks, storing four times more carbon per hectare than other types of tropical forests (Donato et al., 2011). Yet, over 35% of the world’s mangrove swamps have already been degraded by agriculture, urban expansion, pollution, and commercial shellfish farming (MEA, 2005; Giri et al., 2011). To regain these lost services, several communities are now restoring their mangroves, while also adopting more sustainable practices to reduce damage to these important habitats (Feka et al., 2009). Mangrove (as any other) restoration projects do need to be planned carefully to ensure success. For example, it is important to choose ecologically-appropriate species to plant, rather than the fastest growing species that promises quick (but not necessarily optimal) results. Another concern is that mangroves are often exploited, restored, and managed as forests, while the primary determinants of their function and structure—hydrology, soils, and nutrients—are neglected (Lewis, 2005; Gopal, 2013). Recent work showed that natural regeneration of mangrove swamps may produce more diverse, resilient, and productive ecosystems compared to planting efforts (Wetlands International, 2016). These issues will need to be addressed to ensure the long-term sustainability of mangrove restoration efforts.

    Figure 14.5.2 (Left) Classic air-breathing roots of a mangrove tree in Senegal. Photograph by Ji-Elle,, CC0. (Right) A woman collecting oysters among mangroves in Senegal’s Saloum Delta. Photograph by Julien Saison,,_Sine_Saloum,_femme_du_village_de_Soucouta,_S%C3%A9n%C3%A9gal.jpg, CC by-SA 4.0.

    Seasonal drylands: Through extensive land mismanagement (primarily overgrazing and unsustainable agriculture), a large portion of seasonal drylands are undergoing desertification, the conversion of once-productive land to desolate man-made deserts—large dry unproductive dust bowls with no vegetation. The degradation of these lands has crippled agriculture, obliterated natural biological communities, and displaced millions of people. While many drylands seem to regenerate naturally when pressures associated with land mismanagement are removed at an early stage, extended periods of mismanagement hamper recovery by leading to a loss of natural seed banks, nutrients, and microsites that allow for seedling establishment.

    Coral Reefs: Coral reefs are one of the world’s most important marine ecosystems, both ecologically and economically. They provide food to local communities, support ecotourism industries, and protect coasts by reducing wave energy by as much as 97% (Ferrario et al., 2014). Yet, coral reefs are also one of the most threatened marine ecosystems, impacted heavily by overharvesting, pollution, sedimentation, and climate change. Nevertheless, restoring coral reefs is well worth it; a meta-analysis found that it is nearly 20 times cheaper to restore coral reefs than to construct artificial systems for coastal protection (Ferrario et al., 2014). As such, several initiatives are now in progress to restore coral reefs, ranging from transplanting corals and boosting sea urchin populations for seaweed control to creating artificial reefs that can act as substrate for coral settlements (Lindahl, 2003; Edwards and Gomez, 2007).

    The future of ecological restoration

    Research in restoration ecology has grown rapidly in recent years. Many reviews (e.g. Suding, 2011) and books (e.g. Falk et al., 2016) have recently been published on the topic. The Society for Ecological Restoration (SER) was established in 1988 to support the field, and two scientific journals (Restoration Ecology and Ecological Restoration) publish hundreds of papers each year on the topic, in addition to the papers published in other ecological and conservation journals. The growth in research provides scientists and land managers more studies and evidence to inform planning and improvement of restoration projects.

    A recent development in the field involves biodiversity offsets (ten Kate et al., 2004; MacFarlane et al., 2016). A system generally used by developers, biodiversity offsets aim to achieve no net loss of biodiversity during economic development; some projects even aim for a net overall biodiversity gain. Developers accomplish this by compensating for the ecosystem damage (or loss of threatened species populations, Kormos et al., [2014]) that may be incurred during a development project. This compensation usually follows one or more of three main strategies: (1) reducing the extent of damage at the development site, (2) restoring or protecting natural communities at a different “receptor site” as compensation for what is being lost, and (3) enhancement of the remaining natural communities after development.

    While biodiversity offsets (and other restoration initiatives in general) sound good in theory, it is important to remember that the most effective biodiversity conservation strategy remains protecting and managing intact ecosystems. Studies and practical experience have shown that ecological restoration efforts often fail to recreate key characteristics of their reference sites, including species composition or ecosystem functioning, even after years of effort and investment. It is also important to remember than some ecosystems regenerate very slowly—tropical forests require more than 100 years to develop (Bonnell et al., 2011)—so even effective restorations may take decades to provide the full range of benefits. In cases where biodiversity offsets are pursued, it is critical to ensure that these initiatives indeed offer true conservation gains by mitigating the various associated risks (Coralie et al., 2015; Gordon et al., 2015; Maron et al., 2016).

    This page titled 14.5: Restoring Damaged Ecosystems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John W. Wilson & Richard B. Primack (Open Book Publishers) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.