Skip to main content
Biology LibreTexts

27.4: The Metabolic Diversity of Prokaryotes

  • Page ID
    74265
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Skills to Develop

    • Identify the macronutrients needed by prokaryotes, and explain their importance
    • Describe the ways in which prokaryotes get energy and carbon for life processes
    • Describe the roles of prokaryotes in the carbon and nitrogen cycles

    Prokaryotes are metabolically diverse organisms. There are many different environments on Earth with various energy and carbon sources, and variable conditions. Prokaryotes have been able to live in every environment by using whatever energy and carbon sources are available. Prokaryotes fill many niches on Earth, including being involved in nutrient cycles such as nitrogen and carbon cycles, decomposing dead organisms, and thriving inside living organisms, including humans. The very broad range of environments that prokaryotes occupy is possible because they have diverse metabolic processes.

    Needs of Prokaryotes

    The diverse environments and ecosystems on Earth have a wide range of conditions in terms of temperature, available nutrients, acidity, salinity, and energy sources. Prokaryotes are very well equipped to make their living out of a vast array of nutrients and conditions. To live, prokaryotes need a source of energy, a source of carbon, and some additional nutrients.

    Macronutrients

    Cells are essentially a well-organized assemblage of macromolecules and water. Recall that macromolecules are produced by the polymerization of smaller units called monomers. For cells to build all of the molecules required to sustain life, they need certain substances, collectively called nutrients. When prokaryotes grow in nature, they obtain their nutrients from the environment. Nutrients that are required in large amounts are called macronutrients, whereas those required in smaller or trace amounts are called micronutrients. Just a handful of elements are considered macronutrients—carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur. (A mnemonic for remembering these elements is the acronym CHONPS.)

    Why are these macronutrients needed in large amounts? They are the components of organic compounds in cells, including water. Carbon is the major element in all macromolecules: carbohydrates, proteins, nucleic acids, lipids, and many other compounds. Carbon accounts for about 50 percent of the composition of the cell. Nitrogen represents 12 percent of the total dry weight of a typical cell and is a component of proteins, nucleic acids, and other cell constituents. Most of the nitrogen available in nature is either atmospheric nitrogen (N2) or another inorganic form. Diatomic (N2) nitrogen, however, can be converted into an organic form only by certain organisms, called nitrogen-fixing organisms. Both hydrogen and oxygen are part of many organic compounds and of water. Phosphorus is required by all organisms for the synthesis of nucleotides and phospholipids. Sulfur is part of the structure of some amino acids such as cysteine and methionine, and is also present in several vitamins and coenzymes. Other important macronutrients are potassium (K), magnesium (Mg), calcium (Ca), and sodium (Na). Although these elements are required in smaller amounts, they are very important for the structure and function of the prokaryotic cell.

    Micronutrients

    In addition to these macronutrients, prokaryotes require various metallic elements in small amounts. These are referred to as micronutrients or trace elements. For example, iron is necessary for the function of the cytochromes involved in electron-transport reactions. Some prokaryotes require other elements—such as boron (B), chromium (Cr), and manganese (Mn)—primarily as enzyme cofactors.

    The Ways in Which Prokaryotes Obtain Energy

    Prokaryotes can use different sources of energy to assemble macromolecules from smaller molecules. Phototrophs (or phototrophic organisms) obtain their energy from sunlight. Chemotrophs (or chemosynthetic organisms) obtain their energy from chemical compounds. Chemotrophs that can use organic compounds as energy sources are called chemoorganotrophs. Those that can also use inorganic compounds as energy sources are called chemolitotrophs.

    The Ways in Which Prokaryotes Obtain Carbon

    Prokaryotes not only can use different sources of energy but also different sources of carbon compounds. Recall that organisms that are able to fix inorganic carbon are called autotrophs. Autotrophic prokaryotes synthesize organic molecules from carbon dioxide. In contrast, heterotrophic prokaryotes obtain carbon from organic compounds. To make the picture more complex, the terms that describe how prokaryotes obtain energy and carbon can be combined. Thus, photoautotrophs use energy from sunlight, and carbon from carbon dioxide and water, whereas chemoheterotrophs obtain energy and carbon from an organic chemical source. Chemolitoautotrophs obtain their energy from inorganic compounds, and they build their complex molecules from carbon dioxide. Table \(\PageIndex{1}\) summarizes carbon and energy sources in prokaryotes.

    Table \(\PageIndex{1}\): Carbon and Energy Sources in Prokaryotes
    Energy Sources Carbon Sources
    Light Chemicals Carbon dioxide Organic compounds
    Phototrophs Chemotrophs Autotrophs Heterotrophs
      Organic chemicals Inorganic chemicals    
      Chemo-organotrophs Chemolithotrophs    

    Role of Prokaryotes in Ecosystems

    Prokaryotes are ubiquitous: There is no niche or ecosystem in which they are not present. Prokaryotes play many roles in the environments they occupy. The roles they play in the carbon and nitrogen cycles are vital to life on Earth.

    Prokaryotes and the Carbon Cycle

    Carbon is one of the most important macronutrients, and prokaryotes play an important role in the carbon cycle (Figure \(\PageIndex{1}\)). Carbon is cycled through Earth’s major reservoirs: land, the atmosphere, aquatic environments, sediments and rocks, and biomass. The movement of carbon is via carbon dioxide, which is removed from the atmosphere by land plants and marine prokaryotes, and is returned to the atmosphere via the respiration of chemoorganotrophic organisms, including prokaryotes, fungi, and animals. Although the largest carbon reservoir in terrestrial ecosystems is in rocks and sediments, that carbon is not readily available.

    A large amount of available carbon is found in land plants. Plants, which are producers, use carbon dioxide from the air to synthesize carbon compounds. Related to this, one very significant source of carbon compounds is humus, which is a mixture of organic materials from dead plants and prokaryotes that have resisted decomposition. Consumers such as animals use organic compounds generated by producers and release carbon dioxide to the atmosphere. Then, bacteria and fungi, collectively called decomposers, carry out the breakdown (decomposition) of plants and animals and their organic compounds. The most important contributor of carbon dioxide to the atmosphere is microbial decomposition of dead material (dead animals, plants, and humus) that undergo respiration.

    In aqueous environments and their anoxic sediments, there is another carbon cycle taking place. In this case, the cycle is based on one-carbon compounds. In anoxic sediments, prokaryotes, mostly archaea, produce methane (CH4). This methane moves into the zone above the sediment, which is richer in oxygen and supports bacteria called methane oxidizers that oxidize methane to carbon dioxide, which then returns to the atmosphere.

    This illustration shows the role of bacteria in the carbon cycle. Bacteria break down organic carbon, which is released as carbon dioxide into the atmosphere.
    Figure \(\PageIndex{1}\): Prokaryotes play a significant role in continuously moving carbon through the biosphere. (credit: modification of work by John M. Evans and Howard Perlman, USGS)

    Prokaryotes and the Nitrogen Cycle

    Nitrogen is a very important element for life because it is part of proteins and nucleic acids. It is a macronutrient, and in nature, it is recycled from organic compounds to ammonia, ammonium ions, nitrate, nitrite, and nitrogen gas by myriad processes, many of which are carried out only by prokaryotes. As illustrated in Figure \(\PageIndex{2}\), prokaryotes are key to the nitrogen cycle. The largest pool of nitrogen available in the terrestrial ecosystem is gaseous nitrogen from the air, but this nitrogen is not usable by plants, which are primary producers. Gaseous nitrogen is transformed, or “fixed” into more readily available forms such as ammonia through the process of nitrogen fixation. Ammonia can be used by plants or converted to other forms.

    Another source of ammonia is ammonification, the process by which ammonia is released during the decomposition of nitrogen-containing organic compounds. Ammonia released to the atmosphere, however, represents only 15 percent of the total nitrogen released; the rest is as N2 and N2O. Ammonia is catabolized anaerobically by some prokaryotes, yielding N2 as the final product. Nitrification is the conversion of ammonium to nitrite and nitrate. Nitrification in soils is carried out by bacteria belonging to the genera Nitrosomas, Nitrobacter, and Nitrospira. The bacteria performs the reverse process, the reduction of nitrate from the soils to gaseous compounds such as N2O, NO, and N2, a process called denitrification.

    Art Connection

    This illustration shows the role of bacteria in the nitrogen cycle. Nitrogen-fixing bacteria in root nodules of legumes convert nitrogen gas, or N2, into organic nitrogen found in plants. Nitrogen-fixing soil bacteria produce ammonium ion, or NH4+. Decomposers, including bacteria and fungi, decompose organic matter, also releasing NH4+. Nitrification is the process by which nitrifying bacteria produce nitrites (NO2-) and nitrates (NO3-). Nitrates are assimilated by plants, then animals, then decomposers. Denitrifying bacteria convert nitrates to nitrogen gas, completing the cycle.
    Figure \(\PageIndex{2}\): Prokaryotes play a key role in the nitrogen cycle. (credit: Environmental Protection Agency)

    Which of the following statements about the nitrogen cycle is false?

    1. Nitrogen fixing bacteria exist on the root nodules of legumes and in the soil.
    2. Denitrifying bacteria convert nitrates (\(\ce{NO_3^-}\)) into nitrogen gas (\(\ce{N_2}\)).
    3. Ammonification is the process by which ammonium ion (\(\ce{NH_4^+}\)) is released from decomposing organic compounds.
    4. Nitrification is the process by which nitrites (\(\ce{NO_2^-}\)) are converted to ammonium ion (\(\ce{NH_4^+}\)).

    Summary

    Prokaryotes are the most metabolically diverse organisms; they flourish in many different environments with various carbon energy and carbon sources, variable temperature, pH, pressure, and water availability. Nutrients required in large amounts are called macronutrients, whereas those required in trace amounts are called micronutrients or trace elements. Macronutrients include C, H, O, N, P, S, K, Mg, Ca, and Na. In addition to these macronutrients, prokaryotes require various metallic elements for growth and enzyme function. Prokaryotes use different sources of energy to assemble macromolecules from smaller molecules. Phototrophs obtain their energy from sunlight, whereas chemotrophs obtain energy from chemical compounds.

    Prokaryotes play roles in the carbon and nitrogen cycles. Carbon is returned to the atmosphere by the respiration of animals and other chemoorganotrophic organisms. Consumers use organic compounds generated by producers and release carbon dioxide into the atmosphere. The most important contributor of carbon dioxide to the atmosphere is microbial decomposition of dead material. Nitrogen is recycled in nature from organic compounds to ammonia, ammonium ions, nitrite, nitrate, and nitrogen gas. Gaseous nitrogen is transformed into ammonia through nitrogen fixation. Ammonia is anaerobically catabolized by some prokaryotes, yielding N2 as the final product. Nitrification is the conversion of ammonium into nitrite. Nitrification in soils is carried out by bacteria. Denitrification is also performed by bacteria and transforms nitrate from soils into gaseous nitrogen compounds, such as N2O, NO, and N2.

    Art Connections

    Figure \(\PageIndex{2}\): Which of the following statements about the nitrogen cycle is false?

    1. Nitrogen fixing bacteria exist on the root nodules of legumes and in the soil.
    2. Denitrifying bacteria convert nitrates (NO3-) into nitrogen gas (N2).
    3. Ammonification is the process by which ammonium ion (NH4+) is released from decomposing organic compounds.
    4. Nitrification is the process by which nitrites (NO2-) are converted to ammonium ion (NH4+).
    Answer

    D

    Glossary

    ammonification
    process by which ammonia is released during the decomposition of nitrogen-containing organic compounds
    chemotroph
    organism that obtains energy from chemical compounds
    decomposer
    organism that carries out the decomposition of dead organisms
    denitrification
    transformation of nitrate from soil to gaseous nitrogen compounds such as N2O, NO and N2
    nitrification
    conversion of ammonium into nitrite and nitrate in soils
    nitrogen fixation
    process by which gaseous nitrogen is transformed, or “fixed” into more readily available forms such as ammonia

    This page titled 27.4: The Metabolic Diversity of Prokaryotes is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.