7.5.10: Review Questions
- Page ID
- 98250
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A newly discovered hormone contains four amino acids linked together. Under which chemical class would this hormone be classified?
- lipid-derived hormone
- amino acid-derived hormone
- peptide hormone
- glycoprotein
Which class of hormones can diffuse through plasma membranes?
- lipid-derived hormones
- amino acid-derived hormones
- peptide hormones
- glycoprotein hormones
Why are steroids able to diffuse across the plasma membrane?
- Their transport protein moves them through the membrane.
- They are amphipathic, allowing them to interact with the entire phospholipid.
- Cells express channels that let hormones flow down their concentration gradient into the cells.
- They are non-polar molecules.
A new antagonist molecule has been discovered that binds to and blocks plasma membrane receptors. What effect will this antagonist have on testosterone, a steroid hormone?
- It will block testosterone from binding to its receptor.
- It will block testosterone from activating cAMP signaling.
- It will increase testosterone-mediated signaling.
- It will not affect testosterone-mediated signaling.
What effect will a cAMP inhibitor have on a peptide hormone-mediated signaling pathway?
- It will prevent the hormone from binding its receptor.
- It will prevent activation of a G-protein.
- It will prevent activation of adenylate cyclase.
- It will prevent activation of protein kinases.
When insulin binds to its receptor, the complex is endocytosed into the cell. This is an example of ______ in response to hormone signaling.
- cAMP activation
- generating an intracellular receptor
- activation of a hormone response element
- receptor down-regulation
Drinking alcoholic beverages causes an increase in urine output. This most likely occurs because alcohol:
- inhibits ADH release.
- stimulates ADH release.
- inhibits TSH release.
- stimulates TSH release.
FSH and LH release from the anterior pituitary is stimulated by ________.
- TSH
- GnRH
- T3
- PTH
What hormone is produced by beta cells of the pancreas?
- T3
- glucagon
- insulin
- T4
When blood calcium levels are low, PTH stimulates:
- excretion of calcium from the kidneys.
- excretion of calcium from the intestines.
- osteoblasts.
- osteoclasts.
How would mutations that completely ablate the function of the androgen receptor impact the phenotypic development of humans with XY chromosomes?
- Patients would appear phenotypically female.
- Patients would appear phenotypically male with underdeveloped secondary sex characteristics.
- Patients would appear phenotypically male, but cannot produce sperm.
- Patients would express both male and female secondary sex characteristics.
A rise in blood glucose levels triggers release of insulin from the pancreas. This mechanism of hormone production is stimulated by:
- humoral stimuli
- hormonal stimuli
- neural stimuli
- negative stimuli
Which mechanism of hormonal stimulation would be affected if signaling and hormone release from the hypothalamus was blocked?
- humoral and hormonal stimuli
- hormonal and neural stimuli
- neural and humoral stimuli
- hormonal and negative stimuli
A scientist hypothesizes that the pancreas’s hormone production is controlled by neural stimuli. Which observation would support this hypothesis?
- Insulin is produced in response to sudden stress without a rise in blood glucose.
- Insulin is produced in response to a rise in glucagon levels.
- Beta cells express epinephrine receptors.
- Insulin is produced in response to a rise in blood glucose in the brain.
Which endocrine glands are associated with the kidneys?
- thyroid glands
- pituitary glands
- adrenal glands
- gonads
Which of the following hormones is not produced by the anterior pituitary?
- oxytocin
- growth hormone
- prolactin
- thyroid-stimulating hormone
Recent studies suggest that blue light exposure can impact human circadian rhythms. This suggests that blue light disrupts the function of the _____ gland(s).
- adrenal
- pituitary
- pineal
- thyroid