Skip to main content
Biology LibreTexts

2.29: Electron Transport

  • Page ID
    6479
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    f-d:f509a818b138357322c3cd8223f1f52f06f5d9976f0ec3a66ebff981 IMAGE_TINY IMAGE_TINY.1

    Train, truck, boat or plane?

    Ways to transport. To make ATP, energy must be ‘‘transported’’ - first from glucose to NADH, and then somehow passed to ATP. How is this done? With an electron transport chain.

    Cellular Respiration Stage III: Electron Transport

    Electron transport is the final stage of aerobic respiration. In this stage, energy from NADH and FADH2, which result from the Krebs cycle, is transferred to ATP. Can you predict how this happens? (Hint: How does electron transport occur in photosynthesis?)

    See http://www.youtube.com/watch?v=1engJR_XWVU for an overview of the electron transport chain.

    Transporting Electrons

    High-energy electrons are released from NADH and FADH2, and they move along electron transport chains, like those used in photosynthesis. The electron transport chains are on the inner membrane of the mitochondrion. As the high-energy electrons are transported along the chains, some of their energy is captured. This energy is used to pump hydrogen ions(from NADH and FADH2) across the inner membrane, from the matrix into the intermembrane space. Electron transport in a mitochondrion is shown in Figure below.

    Electron transport chains are the last step of cellular respiration

    Electron-transport chains on the inner membrane of the mitochondrion carry out the last stage of cellular respiration.

    Making ATP

    The pumping of hydrogen ions across the inner membrane creates a greater concentration of the ions in the intermembrane space than in the matrix. This chemiosmotic gradient causes the ions to flow back across the membrane into the matrix, where their concentration is lower.ATP synthase acts as a channel protein, helping the hydrogen ions cross the membrane. It also acts as an enzyme, forming ATP from ADP and inorganic phosphate. After passing through the electron-transport chain, the “spent” electrons combine with oxygen to formwater. This is why oxygen is needed; in the absence of oxygen, this process cannot occur.

    How much ATP is produced? The two NADH produced in the cytoplasm produces 2 to 3 ATP each (4 to 6 total) by the electron transport system, the 8 NADH produced in the mitochondriaproduces three ATP each (24 total), and the 2 FADH2 adds its electrons to the electron transport system at a lower level than NADH, so they produce two ATP each (4 total). This results in the formation of 34 ATP during the electron transport stage.

    A summary of this process can be seen at the following sites: http://www.youtube.com/watch?v=fgCcFXUZRk (17:16) and http://www.youtube.com/watch?v=W_Q17tqw_7A (4:59).

    Summary

    • Electron transport is the final stage of aerobic respiration. In this stage, energy from NADH and FADH2 is transferred to ATP.
    • During electron transport, energy is used to pump hydrogen ions across the mitochondrial inner membrane, from the matrix into the intermembrane space.
    • A chemiosmotic gradient causes hydrogen ions to flow back across the mitochondrial membrane into the matrix, through ATP synthase, producing ATP.
    • See Mitochondria at http://johnkyrk.com/mitochondrion.html for a detailed summary.

    Explore More

    Use this resource to answer the questions that follow.

    1. What happens as electrons are passed along the ETC from NADH to oxygen?
    2. What happens as electrons are passed along the ETC from FADH2 to oxygen?
    3. What is the significance of the proton gradient within the mitochondria?

    Review

    1. Summarize the overall task of Stage III of aerobic respiration.
    2. Explain the chemiosmotic gradient.
    3. What is the maximum number of ATP molecules that can be produced during the electron transport stage of aerobic respiration?

    This page titled 2.29: Electron Transport is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?