# 19.2D: Nonrandom Mating and Environmental Variance

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Population structure can be altered by nonrandom mating (the preference of certain individuals for mates) as well as the environment.

##### Learning Objectives
• Explain how environmental variance and nonrandom mating can change gene frequencies in a population

## Key Points

• Nonrandom mating can occur when individuals prefer mates with particular superior physical characteristics or by the preference of individuals to mate with individuals similar to themselves.
• Nonrandom mating can also occur when mates are chosen based on physical accessibility; that is, the availability of some mates over others.
• Phenotypes of individuals can also be influenced by the environment in which they live, such as temperature, terrain, or other factors.
• A cline occurs when populations of a given species vary gradually across an ecological gradient.

## Key Terms

• cline: a gradation in a character or phenotype within a species or other group
• sexual selection: a mode of natural selection in which some individuals out-reproduce others of a population because they are better at securing mates
• assortative mating: between males and females of a species, the mutual attraction or selection, for reproductive purposes, of individuals with similar characteristics

## Nonrandom Mating

If individuals nonrandomly mate with other individuals in the population, i.e. they choose their mate, choices can drive evolution within a population. There are many reasons nonrandom mating occurs. One reason is simple mate choice or sexual selection; for example, female peahens may prefer peacocks with bigger, brighter tails. Traits that lead to more matings for an individual lead to more offspring and through natural selection, eventually lead to a higher frequency of that trait in the population. One common form of mate choice, called positive assortative mating, is an individual’s preference to mate with partners that are phenotypically similar to themselves.

Another cause of nonrandom mating is physical location. This is especially true in large populations spread over large geographic distances where not all individuals will have equal access to one another. Some might be miles apart through woods or over rough terrain, while others might live immediately nearby.

## Environmental Variance

Genes are not the only players involved in determining population variation. Phenotypes are also influenced by other factors, such as the environment. A beachgoer is likely to have darker skin than a city dweller, for example, due to regular exposure to the sun, an environmental factor. Some major characteristics, such as gender, are determined by the environment for some species. For example, some turtles and other reptiles have temperature-dependent sex determination (TSD). TSD means that individuals develop into males if their eggs are incubated within a certain temperature range, or females at a different temperature range.

Geographic separation between populations can lead to differences in the phenotypic variation between those populations. Such geographical variation is seen between most populations and can be significant. One type of geographic variation, called a cline, can be seen as populations of a given species vary gradually across an ecological gradient.

Geographic variation in moose: This graph shows geographical variation in moose; body mass increase positively with latitude. Bergmann’s Rule is an ecologic principle which states that as latitude increases the body mass of a particular species increases. The data are taken from a Swedish study investigating the size of moose as latitude increases as shows the positive relationship between the two, supporting Bergmann’s Rule.

Species of warm-blooded animals, for example, tend to have larger bodies in the cooler climates closer to the earth’s poles, allowing them to better conserve heat. This is considered a latitudinal cline. Alternatively, flowering plants tend to bloom at different times depending on where they are along the slope of a mountain, known as an altitudinal cline.

If there is gene flow between the populations, the individuals will likely show gradual differences in phenotype along the cline. Restricted gene flow, on the other hand, can lead to abrupt differences, even speciation.

• Structural Biochemistry/Organismic and Evolutionary Biology. Provided by: Wikibooks. Located at: en.wikibooks.org/wiki/Structu...ionary_Biology. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Biology. October 22, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• A-level Biology/Central Concepts/Classification, selection and evolution. Provided by: Wikibooks. Located at: en.wikibooks.org/wiki/A-level..._and_evolution. License: CC BY-SA: Attribution-ShareAlike
• Structural Biochemistry/Evolution of Populations. Provided by: Wikibooks. Located at: en.wikibooks.org/wiki/Structu...etic_Variation. License: CC BY-SA: Attribution-ShareAlike
• crossing over. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/crossing%20over. License: CC BY-SA: Attribution-ShareAlike
• genetic variation. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/genetic%20variation. License: CC BY-SA: Attribution-ShareAlike
• phenotypic variation. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/phenotypic%20variation. License: CC BY-SA: Attribution-ShareAlike
• Genetic Diversity. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/Genetic_diversity. License: CC BY-SA: Attribution-ShareAlike
• Coquina variation3. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/File:Co...variation3.jpg. License: CC BY-SA: Attribution-ShareAlike
• Cheetah genetic diversity. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Ch..._diversity.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Biology. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• Genetic Drift. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/Genetic_drift. License: CC BY-SA: Attribution-ShareAlike
• founder effect. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/founder_effect. License: CC BY-SA: Attribution-ShareAlike
• genetic drift. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/genetic_drift. License: CC BY-SA: Attribution-ShareAlike
• Coquina variation3. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/File:Co...variation3.jpg. License: CC BY-SA: Attribution-ShareAlike
• Cheetah genetic diversity. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Ch..._diversity.jpg. License: CC BY-SA: Attribution-ShareAlike
• Founder effect with drift. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Fo...with_drift.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_02.png. License: CC BY: Attribution
• Random genetic drift chart. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/Genetic...rift_chart.png. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_03.jpg. License: CC BY: Attribution
• OpenStax College, Biology. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• OpenStax College, Biology. October 23, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• gene flow. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/gene%20flow. License: CC BY-SA: Attribution-ShareAlike
• mutation. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/mutation. License: CC BY-SA: Attribution-ShareAlike
• Coquina variation3. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/File:Co...variation3.jpg. License: CC BY-SA: Attribution-ShareAlike
• Cheetah genetic diversity. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Ch..._diversity.jpg. License: CC BY-SA: Attribution-ShareAlike
• Founder effect with drift. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Fo...with_drift.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_02.png. License: CC BY: Attribution
• Random genetic drift chart. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/Genetic...rift_chart.png. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_03.jpg. License: CC BY: Attribution
• Portulaca grandiflora mutant1. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Po...ra_mutant1.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_04.jpg. License: CC BY: Attribution
• OpenStax College, Biology. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• OpenStax College, Biology. October 23, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...ol11448/latest. License: CC BY: Attribution
• cline. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/cline. License: CC BY-SA: Attribution-ShareAlike
• Sexual Selection. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/Sexual_selection. License: CC BY-SA: Attribution-ShareAlike
• assortative mating. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/assortative_mating. License: CC BY-SA: Attribution-ShareAlike
• Coquina variation3. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/File:Co...variation3.jpg. License: CC BY-SA: Attribution-ShareAlike
• Cheetah genetic diversity. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Ch..._diversity.jpg. License: CC BY-SA: Attribution-ShareAlike
• Founder effect with drift. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Fo...with_drift.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_02.png. License: CC BY: Attribution
• Random genetic drift chart. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/Genetic...rift_chart.png. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_03.jpg. License: CC BY: Attribution
• Portulaca grandiflora mutant1. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/File:Po...ra_mutant1.jpg. License: CC BY-SA: Attribution-ShareAlike
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_04.jpg. License: CC BY: Attribution
• OpenStax College, Population Genetics. October 16, 2013. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m44584/latest...e_19_02_05.jpg. License: CC BY: Attribution
• American Robin Close-Up. Provided by: Wikimedia. Located at: en.Wikipedia.org/wiki/America...n_Close-Up.JPG. License: CC BY-SA: Attribution-ShareAlike

This page titled 19.2D: Nonrandom Mating and Environmental Variance is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Boundless.