Skip to main content
Biology LibreTexts

1.8: pH

  • Page ID
    3748
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    pH is a measure of the concentration of hydrogens ions (= H+) (= protons) in a solution. Numerically it is the negative logarithm of that concentration expressed in moles per liter (M).

    Pure water spontaneously dissociates into ions, forming a 10-7 M solution of H+ (and OH-). The negative of this logarithm is 7, so the pH of pure water is 7.

    alt

    Solutions with a higher concentration of H+ than occurs in pure water have pH values below 7 and are acidic. Solutions containing molecules or ions that reduce the concentration of H+ below that of pure water have pH values above 7 and are basic or alkaline.

    Is pH important? Yes!

    The properties of most proteins, enzymes for example, are sensitive to pH.

    As the pH drops,

    • H+ bind to the carboxyl groups (COO-) of aspartic acid (Asp) and glutamic acid (Glu), neutralizing their negative charge, and
    • H+ bind to the unoccupied pair of electrons on the N atom of the amino (NH2 ) groups of lysine (Lys) and arginine (Arg) giving them a positive charge.

    The result: Not only does the net charge on the molecule change (it becomes more positive) but many of the opportunities that its R groups have for ionic interactions with other molecules and ions are altered.

    As the pH rises,

    • H+ are removed from the COOH groups of Asp and Glu, giving them a negative charge (COO-), and
    • H+ are removed from the NH3+ groups of Lys and Arg removing their positive charge.

    The result: Again the net charge on the molecule changes (it becomes more negative) and, again, many of the opportunities its R groups have for ionic interactions with other molecules or ions are altered.

    The pH of the cytosol within a human cell is about 7.4. BUT, this value masks the pH differences that are found in various compartments within the cell. For example,

    • The interior of lysosomes is much more acidic (as low as pH 4) than the cytosol, and the enzymes within work best at these low pH values.
    • The pH differential created within chloroplasts by the energy of the sun is harnessed to synthesize ATP which, in turn, powers the synthesis of food.
    • The pH differential created within mitochondria during the respiration of food is harnessed to the synthesis of ATP which, in turn, powers most of the energy-consuming activities of the cell such as locomotion and biosynthesis of cell components.

    This page titled 1.8: pH is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by John W. Kimball via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?