Skip to main content
Biology LibreTexts

13.1: Muscle Contraction

  • Page ID
    6751
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    What makes a muscle contract?

    It starts with a signal from the nervous system. So it starts with a signal from your brain. The signal goes through your nervous system to your muscle. Your muscle contracts, and your bones move. And all this happens incredibly fast.

    f-d:7bc50857fc33034ba5e057f286fc40c4459cf892ef65606999eb62de IMAGE_TINY IMAGE_TINY.1

    Muscle Contraction

    Muscle contraction occurs when muscle fibers get shorter. Literally, the muscle fibers get smaller in size. To understand how this happens, you need to know more about the structure of muscle fibers.

    Structure of Muscle Fibers

    Each muscle fiber contains hundreds of organelles called myofibrils. Each myofibril is made up of two types of protein filaments: actin filaments, which are thinner, and myosin filaments, which are thicker. Actin filaments are anchored to structures called Z lines (Figure 13.13.2). The region between two Z lines is called a sarcomere. Within a sarcomere, myosin filaments overlap the actin filaments. The myosin filaments have tiny structures called cross bridges that can attach to actin filaments.

    Parts of a sarcomere

    Figure 13.13.2: Sarcomere. A sarcomere contains actin and myosin filaments between two Z lines.

    Sliding Filament Theory

    The most widely accepted theory explaining how muscle fibers contract is called the sliding filament theory. According to this theory, myosin filaments use energy from ATP to “walk” along the actin filaments with their cross bridges. This pulls the actin filaments closer together. The movement of the actin filaments also pulls the Z lines closer together, thus shortening the sarcomere.

    When all of the sarcomeres in a muscle fiber shorten, the fiber contracts. A muscle fiber either contracts fully or it doesn’t contract at all. The number of fibers that contract determines the strength of the muscular force. When more fibers contract at the same time, the force is greater.

    Muscles and Nerves

    Muscles cannot contract on their own. They need a stimulus from a nerve cell to “tell” them to contract. Let’s say you decide to raise your hand in class. Your brain sends electrical messages to nerve cells, called motor neurons, in your arm and shoulder. The motor neurons, in turn, stimulate muscle fibers in your arm and shoulder to contract, causing your arm to rise. Involuntary contractions of cardiac and smooth muscles are also controlled by nerves.

    Summary

    • According to the sliding filament theory, a muscle fiber contracts when myosin filaments pull actin filaments closer together and thus shorten sarcomeres within a fiber.
    • When all the sarcomeres in a muscle fiber shorten, the fiber contracts.

    Review

    1. What is a sarcomere and Z-line?
    2. What are the two protein filaments of a myofibril?
    3. Explain how muscles contract according to the sliding filament theory.
    4. A serious neck injury may leave a person paralyzed from the neck down. Explain why.

    This page titled 13.1: Muscle Contraction is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License