Skip to main content
Biology LibreTexts

9.S: Beyond the Mk Model (Summary)

  • Page ID
    21802
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The simple Mk model provides a useful foundation for a number of innovative methods. These methods capture evolutionary processes that are more complicated than the original model, including models that vary through time or across clades. Modeling more than one discrete character at a time allows us to test for the correlated evolution of discrete characters.

    Taken as a whole, chapters 7 through 9 provide a basis for the analysis of discrete characters on trees. One can test a variety of biologically relevant hypotheses about how these characters have changed along the branches of the tree of life.

    References

    Beaulieu, J. M., B. C. O’Meara, and M. J. Donoghue. 2013. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Syst. Biol. 62:725–737.

    Felsenstein, J. 2012. A comparative method for both discrete and continuous characters using the threshold model. Am. Nat. 179:145–156.

    Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15.

    Felsenstein, J. 2005. Using the quantitative genetic threshold model for inferences between and within species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:1427–1434.

    FitzJohn, R. G. 2012. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3:1084–1092.

    Fukuyama, K. 1991. Spawning behaviour and male mating tactics of a foam-nesting treefrog, Rhacophorus schlegelii. Anim. Behav. 42:193–199. Elsevier.

    Gomez-Mestre, I., R. A. Pyron, and J. J. Wiens. 2012. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66:3687–3700.

    Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press.

    Huelsenbeck, J. P., B. Larget, and M. E. Alfaro. 2004. Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Mol. Biol. Evol. 21:1123–1133.

    Liò, P., and N. Goldman. 1998. Models of molecular evolution and phylogeny. Genome Res. 8:1233–1244.

    Maddison, W. P., P. E. Midford, S. P. Otto, and T. Oakley. 2007. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56:701–710. Oxford University Press.

    Marazzi, B., C. Ané, M. F. Simon, A. Delgado-Salinas, M. Luckow, and M. J. Sanderson. 2012. Locating evolutionary precursors on a phylogenetic tree. Evolution 66:3918–3930.

    Marquez, R., and P. Verrell. 1991. The courtship and mating of the Iberian midwife toad Alytes cisternasii (Amphibia: Anura: Discoglossidae). J. Zool. 225:125–139. Blackwell Publishing Ltd.

    O’Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933.

    Pagel, M. 1999a. Inferring the historical patterns of biological evolution. Nature 401:877–884.

    Pagel, M. 1999b. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48:612–622.

    Pagel, M., and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete characters by reversible-jump markov chain monte carlo. Am. Nat. 167:808–825.

    Revell, L. J. 2014. Ancestral character estimation under the threshold model from quantitative genetics. Evolution 68:743–759.

    Rey, H. A. 2007. Curious George: Tadpole trouble. Houghton Mifflin Harcourt.

    Steel, M., and D. Penny. 2000. Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17:839–850.

    Thomas, G. H., R. P. Freckleton, and T. Székely. 2006. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proc. Biol. Sci. 273:1619–1624.

    Tuffley, C., and M. Steel. 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull. Math. Biol. 59:581–607.

    Tyler, M. J., and D. B. Carter. 1981. Oral birth of the young of the gastric brooding frog rheobatrachus silus. Anim. Behav. 29:280–282. Elsevier.

    Uyeda, J. C., L. J. Harmon, and C. E. Blank. 2016. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS One 11:e0162539. Public Library of Science.

    Yang, Z. 2006. Computational molecular evolution. Oxford University Press.

    Zamudio, K. R., R. C. Bell, R. C. Nali, C. F. B. Haddad, and C. P. A. Prado. 2016. Polyandry, predation, and the evolution of frog reproductive modes. Am. Nat. 188 Suppl 1:S41–61.


    9.S: Beyond the Mk Model (Summary) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?